BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38568745)

  • 41. Cryptochrome expression in the eye of migratory birds depends on their migratory status.
    Fusani L; Bertolucci C; Frigato E; Foà A
    J Exp Biol; 2014 Mar; 217(Pt 6):918-23. PubMed ID: 24622895
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anisotropic magnetic field effects in the re-oxidation of cryptochrome in the presence of scavenger radicals.
    Deviers J; Cailliez F; de la Lande A; Kattnig DR
    J Chem Phys; 2022 Jan; 156(2):025101. PubMed ID: 35032990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural changes within the bifunctional cryptochrome/photolyase CraCRY upon blue light excitation.
    Franz-Badur S; Penner A; Straß S; von Horsten S; Linne U; Essen LO
    Sci Rep; 2019 Jul; 9(1):9896. PubMed ID: 31289290
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cryptochromes--a potential magnetoreceptor: what do we know and what do we want to know?
    Liedvogel M; Mouritsen H
    J R Soc Interface; 2010 Apr; 7 Suppl 2(Suppl 2):S147-62. PubMed ID: 19906675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes.
    Lau JC; Rodgers CT; Hore PJ
    J R Soc Interface; 2012 Dec; 9(77):3329-37. PubMed ID: 22977104
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cryptochrome: The magnetosensor with a sinister side?
    Landler L; Keays DA
    PLoS Biol; 2018 Oct; 16(10):e3000018. PubMed ID: 30278038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina.
    Wu H; Scholten A; Einwich A; Mouritsen H; Koch KW
    Sci Rep; 2020 Apr; 10(1):7364. PubMed ID: 32355203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Viability of superoxide-containing radical pairs as magnetoreceptors.
    Player TC; Hore PJ
    J Chem Phys; 2019 Dec; 151(22):225101. PubMed ID: 31837685
    [TBL] [Abstract][Full Text] [Related]  

  • 49.
    Deviers J; Cailliez F; Gutiérrez BZ; Kattnig DR; de la Lande A
    Phys Chem Chem Phys; 2022 Jul; 24(27):16784-16798. PubMed ID: 35775941
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Magnetic Compass of Birds: The Role of Cryptochrome.
    Wiltschko R; Nießner C; Wiltschko W
    Front Physiol; 2021; 12():667000. PubMed ID: 34093230
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.
    Nohr D; Franz S; Rodriguez R; Paulus B; Essen LO; Weber S; Schleicher E
    Biophys J; 2016 Jul; 111(2):301-311. PubMed ID: 27463133
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Zebra finches have a light-dependent magnetic compass similar to migratory birds.
    Pinzon-Rodriguez A; Muheim R
    J Exp Biol; 2017 Apr; 220(Pt 7):1202-1209. PubMed ID: 28356366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Driven Radical Motion Enhances Cryptochrome Magnetoreception: Toward Live Quantum Sensing.
    Smith LD; Chowdhury FT; Peasgood I; Dawkins N; Kattnig DR
    J Phys Chem Lett; 2022 Nov; 13(45):10500-10506. PubMed ID: 36332112
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular Bases of Signaling Processes Regulated by Cryptochrome Sensory Photoreceptors in Plants.
    Fraikin GY; Belenikina NS; Rubin AB
    Biochemistry (Mosc); 2023 Jun; 88(6):770-782. PubMed ID: 37748873
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.
    Nießner C; Denzau S; Stapput K; Ahmad M; Peichl L; Wiltschko W; Wiltschko R
    J R Soc Interface; 2013 Nov; 10(88):20130638. PubMed ID: 23966619
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4.
    Günther A; Einwich A; Sjulstok E; Feederle R; Bolte P; Koch KW; Solov'yov IA; Mouritsen H
    Curr Biol; 2018 Jan; 28(2):211-223.e4. PubMed ID: 29307554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of Radical-Radical Distances in Light-Active Proteins and Their Implication for Biological Magnetoreception.
    Nohr D; Paulus B; Rodriguez R; Okafuji A; Bittl R; Schleicher E; Weber S
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8550-8554. PubMed ID: 28627073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Origin of light-induced spin-correlated radical pairs in cryptochrome.
    Weber S; Biskup T; Okafuji A; Marino AR; Berthold T; Link G; Hitomi K; Getzoff ED; Schleicher E; Norris JR
    J Phys Chem B; 2010 Nov; 114(45):14745-54. PubMed ID: 20684534
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2.
    Ma L; Wang X; Guan Z; Wang L; Wang Y; Zheng L; Gong Z; Shen C; Wang J; Zhang D; Liu Z; Yin P
    Nat Struct Mol Biol; 2020 May; 27(5):472-479. PubMed ID: 32398826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coupling Drosophila melanogaster Cryptochrome Light Activation and Oxidation of the Kvβ Subunit Hyperkinetic NADPH Cofactor.
    Hong G; Pachter R; Ritz T
    J Phys Chem B; 2018 Jun; 122(25):6503-6510. PubMed ID: 29847128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.