These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 38568999)
1. Comparative proteomic analysis of the hemolymph and salivary glands of Rhodnius prolixus and R. colombiensis reveals candidates associated with differential lytic activity against Trypanosoma cruzi Dm28c and T. cruzi Y. Barbosa HJ; Quevedo YS; Torres AM; Veloza GAG; Carranza Martínez JC; Urrea-Montes DA; Robello-Porto C; Vallejo GA PLoS Negl Trop Dis; 2024 Apr; 18(4):e0011452. PubMed ID: 38568999 [TBL] [Abstract][Full Text] [Related]
2. The interaction between Trypanosoma rangeli and the nitrophorins in the salivary glands of the triatomine Rhodnius prolixus (Hemiptera; Reduviidae). Paim RM; Pereira MH; Araújo RN; Gontijo NF; Guarneri AA Insect Biochem Mol Biol; 2013 Mar; 43(3):229-36. PubMed ID: 23295786 [TBL] [Abstract][Full Text] [Related]
3. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus. Mello CB; Garcia ES; Ratcliffe NA; Azambuja P J Invertebr Pathol; 1995 May; 65(3):261-8. PubMed ID: 7745280 [TBL] [Abstract][Full Text] [Related]
5. Differential in vitro and in vivo behavior of three strains of Trypanosoma cruzi in the gut and hemolymph of Rhodnius prolixus. Mello CB; Azambuja P; Garcia ES; Ratcliffe NA Exp Parasitol; 1996 Mar; 82(2):112-21. PubMed ID: 8617337 [TBL] [Abstract][Full Text] [Related]
6. Genotyping of Trypanosoma cruzi DTUs and Trypanosoma rangeli genetic groups in experimentally infected Rhodnius prolixus by PCR-RFLP. Sá AR; Dias GB; Kimoto KY; Steindel M; Grisard EC; Toledo MJ; Gomes ML Acta Trop; 2016 Apr; 156():115-21. PubMed ID: 26792202 [TBL] [Abstract][Full Text] [Related]
7. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. Castro DP; Moraes CS; Gonzalez MS; Ratcliffe NA; Azambuja P; Garcia ES PLoS One; 2012; 7(5):e36591. PubMed ID: 22574189 [TBL] [Abstract][Full Text] [Related]
8. Benefits and costs of immune memory in Rhodnius prolixus against Trypanosoma cruzi. Carmona-Peña SP; Vázquez-Chagoyán JC; Castro DP; Genta FA; Contreras-Garduño J Microb Pathog; 2022 Apr; 165():105505. PubMed ID: 35341956 [TBL] [Abstract][Full Text] [Related]
9. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Vieira CS; Waniek PJ; Castro DP; Mattos DP; Moreira OC; Azambuja P Parasit Vectors; 2016 Mar; 9():119. PubMed ID: 26931761 [TBL] [Abstract][Full Text] [Related]
10. Behavioral fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi. Hinestroza G; Ortiz MI; Molina J Rev Soc Bras Med Trop; 2016; 49(4):425-32. PubMed ID: 27598628 [TBL] [Abstract][Full Text] [Related]
14. Transmission ecology of Trypanosoma cruzi by Rhodnius prolixus (Reduviidae: Triatominae) infesting palm-tree species in the Colombian Orinoco, indicates risks to human populations. Urbano P; Hernández C; Velásquez-Ortiz N; Ballesteros N; Páez-Triana L; Vega L; Urrea V; Ramírez A; Muñoz M; Ibarra-Cerdeña CN; González C; Ramírez JD PLoS Negl Trop Dis; 2024 Feb; 18(2):e0011981. PubMed ID: 38377140 [TBL] [Abstract][Full Text] [Related]
15. Modulation of IMD, Toll, and Jak/STAT Immune Pathways Genes in the Fat Body of Rolandelli A; Nascimento AEC; Silva LS; Rivera-Pomar R; Guarneri AA Front Cell Infect Microbiol; 2020; 10():598526. PubMed ID: 33537241 [No Abstract] [Full Text] [Related]
16. Lipoproteins from vertebrate host blood plasma are involved in Trypanosoma cruzi epimastigote agglutination and participate in interaction with the vector insect, Rhodnius prolixus. Moreira CJC; De Cicco NNT; Galdino TS; Feder D; Gonzalez MS; Miguel RB; Coura JR; Castro HC; Azambuja P; Atella GC; Ratcliffe NA; Mello CB Exp Parasitol; 2018 Dec; 195():24-33. PubMed ID: 30261188 [TBL] [Abstract][Full Text] [Related]
17. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus. Eberhard FE; Klimpel S; Guarneri AA; Tobias NJ Microbiome; 2022 Mar; 10(1):45. PubMed ID: 35272716 [TBL] [Abstract][Full Text] [Related]
18. Distribution and natural infection status of synantrophic triatomines (Hemiptera: Reduviidae), vectors of Trypanosoma cruzi, reveals new epidemiological scenarios for chagas disease in the Highlands of Colombia. Cantillo-Barraza O; Medina M; Zuluaga S; Blanco MI; Caro R; Jaimes-Dueñez J; Beltrán V; Xavier SC; Triana-Chavez O PLoS Negl Trop Dis; 2021 Jul; 15(7):e0009574. PubMed ID: 34280203 [TBL] [Abstract][Full Text] [Related]
19. Eco-epidemiological study reveals the importance of Triatoma dimidiata in the Trypanosoma cruzi transmission, in a municipality certified without transmission by Rhodnius prolixus in Colombia. Cantillo-Barraza O; Medina M; Zuluaga S; Valverde C; Motta C; Ladino A; Osorio MI; Jaimes-Dueñez J; Triana-Chávez O Acta Trop; 2020 Sep; 209():105550. PubMed ID: 32473116 [TBL] [Abstract][Full Text] [Related]
20. Interrogating the transmission dynamics of Medina M; Zuluaga S; Martínez MF; Bermúdez JC; Hernández C; Beltrán V; Velásquez-Ortiz N; Muñoz M; Ramírez JD; Triana O; Cantillo-Barraza O Front Cell Infect Microbiol; 2022; 12():998202. PubMed ID: 36275020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]