BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38569036)

  • 1. An efficient approach toward production of near-zigzag single-chirality carbon nanotubes.
    Li Y; Li L; Jiang H; Qian L; He M; Zhou D; Jiang K; Liu H; Qin X; Gao Y; Wu Q; Chi X; Li Z; Zhang J
    Sci Adv; 2024 Apr; 10(14):eadn6519. PubMed ID: 38569036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes.
    Kharlamova MV; Burdanova MG; Paukov MI; Kramberger C
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Synthesis of Colorful Single-Walled Carbon Nanotube Thin Films.
    Liao Y; Jiang H; Wei N; Laiho P; Zhang Q; Khan SA; Kauppinen EI
    J Am Chem Soc; 2018 Aug; 140(31):9797-9800. PubMed ID: 30049205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics of Chirality Definable Growth of Single-Walled Carbon Nanotubes.
    Yoshikawa R; Hisama K; Ukai H; Takagi Y; Inoue T; Chiashi S; Maruyama S
    ACS Nano; 2019 Jun; 13(6):6506-6512. PubMed ID: 31117374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirality Distributions for Semiconducting Single-Walled Carbon Nanotubes Determined by Photoluminescence Spectroscopy.
    Irita M; Yamamoto T; Homma Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system.
    Yang D; Li L; Wei X; Wang Y; Zhou W; Kataura H; Xie S; Liu H
    Sci Adv; 2021 Feb; 7(8):. PubMed ID: 33597241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency single-chirality separation of carbon nanotubes using temperature-controlled gel chromatography.
    Liu H; Tanaka T; Urabe Y; Kataura H
    Nano Lett; 2013 May; 13(5):1996-2003. PubMed ID: 23573837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extended model for chirality selection in single-walled carbon nanotubes.
    Turaeva N; Kim Y; Kuljanishvili I
    Nanoscale Adv; 2023 Jul; 5(14):3684-3690. PubMed ID: 37441250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes.
    Zhao X; Sun S; Yang F; Li Y
    Acc Chem Res; 2022 Dec; 55(23):3334-3344. PubMed ID: 36384282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Smart poisoning" of Co/SiO
    Yuan Y; Karahan HE; Yıldırım C; Wei L; Birer Ö; Zhai S; Lau R; Chen Y
    Nanoscale; 2016 Oct; 8(40):17705-17713. PubMed ID: 27722714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography.
    Liu H; Tanaka T; Kataura H
    Nano Lett; 2014 Nov; 14(11):6237-43. PubMed ID: 25347592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst.
    Liu B; Ren W; Li S; Liu C; Cheng HM
    Chem Commun (Camb); 2012 Feb; 48(18):2409-11. PubMed ID: 22274707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.
    Liu B; Wu F; Gui H; Zheng M; Zhou C
    ACS Nano; 2017 Jan; 11(1):31-53. PubMed ID: 28072518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment of high-purity large-diameter semiconducting single-walled carbon nanotubes.
    Wang J; Lei T
    Nanoscale; 2022 Jan; 14(4):1096-1106. PubMed ID: 34989744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation.
    Subbaiyan NK; Cambré S; Parra-Vasquez AN; Hároz EH; Doorn SK; Duque JG
    ACS Nano; 2014 Feb; 8(2):1619-28. PubMed ID: 24450507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis of single-chirality carbon nanotubes.
    Sanchez-Valencia JR; Dienel T; Gröning O; Shorubalko I; Mueller A; Jansen M; Amsharov K; Ruffieux P; Fasel R
    Nature; 2014 Aug; 512(7512):61-4. PubMed ID: 25100481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive sites for chiral selective growth of single-walled carbon nanotubes: a DFT study of Ni55-C(n) complexes.
    Wang Q; Wang H; Wei L; Yang SW; Chen Y
    J Phys Chem A; 2012 Nov; 116(47):11709-17. PubMed ID: 23110420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.
    He P; Meany B; Wang C; Piao Y; Kwon H; Deng S; Wang Y
    Electrophoresis; 2017 Jul; 38(13-14):1669-1677. PubMed ID: 28370070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes.
    Liu B; Liu J; Tu X; Zhang J; Zheng M; Zhou C
    Nano Lett; 2013 Sep; 13(9):4416-21. PubMed ID: 23937554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy.
    Ago H; Imamura S; Okazaki T; Saito T; Yumura M; Tsuji M
    J Phys Chem B; 2005 May; 109(20):10035-41. PubMed ID: 16852214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.