These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38569043)

  • 1. High-speed fluidic processing circuits for dynamic control of haptic and robotic systems.
    Stanley AA; Roby ES; Keller SJ
    Sci Adv; 2024 Apr; 10(14):eadl3014. PubMed ID: 38569043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CMOS-Inspired Complementary Fluidic Circuits for Soft Robots.
    Song S; Joshi S; Paik J
    Adv Sci (Weinh); 2021 Oct; 8(20):e2100924. PubMed ID: 34459157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronics-free pneumatic circuits for controlling soft-legged robots.
    Drotman D; Jadhav S; Sharp D; Chan C; Tolley MT
    Sci Robot; 2021 Feb; 6(51):. PubMed ID: 34043527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved VLSI Design of the ALU Based FIR Filter for Biomedical Image Filtering Application.
    Arulkumar M; Chandrasekaran M
    Curr Med Imaging; 2021; 17(2):276-287. PubMed ID: 32807061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pneumatic random-access memory for controlling soft robots.
    Hoang S; Karydis K; Brisk P; Grover WH
    PLoS One; 2021; 16(7):e0254524. PubMed ID: 34270580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale.
    Kang SH; Jo JW; Lee JM; Moon S; Shin SB; Choi SB; Byeon D; Kim J; Kim MG; Kim YH; Kim JW; Park SK
    Nat Commun; 2024 Apr; 15(1):2814. PubMed ID: 38561403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compact DEA-based soft peristaltic pump for power and control of fluidic robots.
    Xu S; Nunez CM; Souri M; Wood RJ
    Sci Robot; 2023 Jun; 8(79):eadd4649. PubMed ID: 37343077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed digital pneumatic logic for the control of soft robotic actuators.
    Conrad S; Teichmann J; Auth P; Knorr N; Ulrich K; Bellin D; Speck T; Tauber FJ
    Sci Robot; 2024 Jan; 9(86):eadh4060. PubMed ID: 38295189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling of pneumatic digital logic circuits.
    Duncan PN; Ahrar S; Hui EE
    Lab Chip; 2015 Mar; 15(5):1360-5. PubMed ID: 25591784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic transistor for automatic control of liquids.
    Gopinathan KA; Mishra A; Mutlu BR; Edd JF; Toner M
    Nature; 2023 Oct; 622(7984):735-741. PubMed ID: 37880436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers.
    Ly K; Kellaris N; McMorris D; Johnson BK; Acome E; Sundaram V; Naris M; Humbert JS; Rentschler ME; Keplinger C; Correll N
    Soft Robot; 2021 Dec; 8(6):673-686. PubMed ID: 33001742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling Up Multi-bit DNA Full Adder Circuits with Minimal Strand Displacement Reactions.
    Xie N; Li M; Wang Y; Lv H; Shi J; Li J; Li Q; Wang F; Fan C
    J Am Chem Soc; 2022 Jun; 144(21):9479-9488. PubMed ID: 35603742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable soft valves for digital and analog control.
    Decker CJ; Jiang HJ; Nemitz MP; Root SE; Rajappan A; Alvarez JT; Tracz J; Wille L; Preston DJ; Whitesides GM
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2205922119. PubMed ID: 36161907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital logic for soft devices.
    Preston DJ; Rothemund P; Jiang HJ; Nemitz MP; Rawson J; Suo Z; Whitesides GM
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7750-7759. PubMed ID: 30923120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low energy, low latency and high speed array divider circuit using a shannon theorem based adder cell.
    Senthilpari C; Diwakar K; Singh AK
    Recent Pat Nanotechnol; 2009; 3(1):61-72. PubMed ID: 19149756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microfluidic Transistor for Liquid Signal Processing.
    Gopinathan KA; Mishra A; Mutlu BR; Edd JF; Toner M
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular fluidic resistors to enable widely tunable flow rate and fluidic switching period in a microfluidic oscillator.
    Dang VB; Kim SJ
    Electrophoresis; 2017 Apr; 38(7):977-982. PubMed ID: 27987226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bioinspired Fluid-Filled Soft Linear Actuator.
    Filogna S; PaternĂ² L; Vecchi F; Musco L; Iacovacci V; Menciassi A
    Soft Robot; 2023 Jun; 10(3):454-466. PubMed ID: 36318817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Modeling of a Low-Cost Fluidic Oscillator for Use in an Educational Respiratory Simulator.
    Dillon T; Ozturk C; Mendez K; Rosalia L; Gollob SD; Kempf K; Roche ET
    Adv Nanobiomed Res; 2021 Dec; 1(12):2000112. PubMed ID: 33786536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Control of Negative Transconductance in Organic Heterojunction Transistor for High-Performance, Low-Power Flexible Ternary Logic Circuits.
    Lee C; Choi J; Park H; Lee C; Kim CH; Yoo H; Im SG
    Small; 2021 Nov; 17(46):e2103365. PubMed ID: 34636162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.