BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38569183)

  • 1. Mathematical Model-Driven Deep Learning Enables Personalized Adaptive Therapy.
    Gallagher K; Strobl MAR; Park DS; Spoendlin FC; Gatenby RA; Maini PK; Anderson ARA
    Cancer Res; 2024 Jun; 84(11):1929-1941. PubMed ID: 38569183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy.
    Shen C; Chen L; Gonzalez Y; Jia X
    Med Phys; 2021 Apr; 48(4):1909-1920. PubMed ID: 33432646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Reinforcement Learning and Simulation as a Path Toward Precision Medicine.
    Petersen BK; Yang J; Grathwohl WS; Cockrell C; Santiago C; An G; Faissol DM
    J Comput Biol; 2019 Jun; 26(6):597-604. PubMed ID: 30681362
    [No Abstract]   [Full Text] [Related]  

  • 5. Deep reinforcement learning identifies personalized intermittent androgen deprivation therapy for prostate cancer.
    Lu Y; Chu Q; Li Z; Wang M; Gatenby R; Zhang Q
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38493345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep reinforcement learning-based control of chemo-drug dose in cancer treatment.
    Mashayekhi H; Nazari M; Jafarinejad F; Meskin N
    Comput Methods Programs Biomed; 2024 Jan; 243():107884. PubMed ID: 37948911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy.
    Niraula D; Jamaluddin J; Matuszak MM; Haken RKT; Naqa IE
    Sci Rep; 2021 Dec; 11(1):23545. PubMed ID: 34876609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning the Dynamic Treatment Regimes from Medical Registry Data through Deep Q-network.
    Liu N; Liu Y; Logan B; Xu Z; Tang J; Wang Y
    Sci Rep; 2019 Feb; 9(1):1495. PubMed ID: 30728403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Painless and accurate medical image analysis using deep reinforcement learning with task-oriented homogenized automatic pre-processing.
    Yuan D; Liu Y; Xu Z; Zhan Y; Chen J; Lukasiewicz T
    Comput Biol Med; 2023 Feb; 153():106487. PubMed ID: 36603432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep reinforcement learning for personalized treatment recommendation.
    Liu M; Shen X; Pan W
    Stat Med; 2022 Sep; 41(20):4034-4056. PubMed ID: 35716038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the future: how mathematical models inform treatment schedules for cancer.
    Mathur D; Barnett E; Scher HI; Xavier JB
    Trends Cancer; 2022 Jun; 8(6):506-516. PubMed ID: 35277375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DVNE-DRL: dynamic virtual network embedding algorithm based on deep reinforcement learning.
    Xiao X
    Sci Rep; 2023 Nov; 13(1):19789. PubMed ID: 37957350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the interpretability of deep reinforcement learning in urban drainage system operation.
    Tian W; Fu G; Xin K; Zhang Z; Liao Z
    Water Res; 2024 Feb; 249():120912. PubMed ID: 38042066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidrug Cancer Therapy in Metastatic Castrate-Resistant Prostate Cancer: An Evolution-Based Strategy.
    West JB; Dinh MN; Brown JS; Zhang J; Anderson AR; Gatenby RA
    Clin Cancer Res; 2019 Jul; 25(14):4413-4421. PubMed ID: 30992299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey.
    Xu L; Zhu S; Wen N
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36270582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal adaptive nonpharmaceutical interventions to mitigate the outbreak of respiratory infections following the COVID-19 pandemic: a deep reinforcement learning study in Hong Kong, China.
    Yao Y; Zhou H; Cao Z; Zeng DD; Zhang Q
    J Am Med Inform Assoc; 2023 Aug; 30(9):1543-1551. PubMed ID: 37364025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparing for the next pandemic: Simulation-based deep reinforcement learning to discover and test multimodal control of systemic inflammation using repurposed immunomodulatory agents.
    Cockrell C; Larie D; An G
    Front Immunol; 2022; 13():995395. PubMed ID: 36479109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long range personalized cancer treatment strategies incorporating evolutionary dynamics.
    Yeang CH; Beckman RA
    Biol Direct; 2016 Oct; 11(1):56. PubMed ID: 27770811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting patient-specific response to adaptive therapy in metastatic castration-resistant prostate cancer using prostate-specific antigen dynamics.
    Brady-Nicholls R; Zhang J; Zhang T; Wang AZ; Butler R; Gatenby RA; Enderling H
    Neoplasia; 2021 Sep; 23(9):851-858. PubMed ID: 34298234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of open questions in adaptive therapy: Bridging mathematics and clinical translation.
    West J; Adler F; Gallaher J; Strobl M; Brady-Nicholls R; Brown J; Roberson-Tessi M; Kim E; Noble R; Viossat Y; Basanta D; Anderson ARA
    Elife; 2023 Mar; 12():. PubMed ID: 36952376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.