These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38569635)

  • 1. Advancements and Challenges in Robot-Assisted Bone Processing in Neurosurgical Procedures.
    Kitahama Y; Shizuka H; Nakano Y; Ohara Y; Muto J; Tsuchida S; Motoyama D; Miyake H; Sakai K
    Neurospine; 2024 Mar; 21(1):97-103. PubMed ID: 38569635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Experimental Evaluation of a 3D Vision System for Grinding Robot.
    Diao S; Chen X; Luo J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid Lubrication and Cooling Effects in Diamond Grinding of Human Iliac Bone.
    Kitahama Y; Shizuka H; Kimura R; Suzuki T; Ohara Y; Miyake H; Sakai K
    Medicina (Kaunas); 2021 Jan; 57(1):. PubMed ID: 33466923
    [No Abstract]   [Full Text] [Related]  

  • 4. Grinding trajectory generator in robot-assisted laminectomy surgery.
    Li Q; Du Z; Yu H
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):485-494. PubMed ID: 33507483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery.
    Tian H; Wang C; Dang X; Sun L
    Med Biol Eng Comput; 2017 Dec; 55(12):2107-2121. PubMed ID: 28536978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic neurosurgery: a preliminary study using an active vision-guided robotic arm for bone drilling and endoscopic manoeuvres.
    Awang MS; Abdullah MZ
    Malays J Med Sci; 2011 Apr; 18(2):53-7. PubMed ID: 22135587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a robot-assisted system for transforaminal percutaneous endoscopic lumbar surgeries: study protocol.
    Fan N; Yuan S; Du P; Zhu W; Li L; Hai Y; Ding H; Wang G; Zang L
    J Orthop Surg Res; 2020 Oct; 15(1):479. PubMed ID: 33076965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic Applications in Cranial Neurosurgery: Current and Future.
    Ball T; González-Martínez J; Zemmar A; Sweid A; Chandra S; VanSickle D; Neimat JS; Jabbour P; Wu C
    Oper Neurosurg (Hagerstown); 2021 Nov; 21(6):371-379. PubMed ID: 34192764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilevel Fuzzy Control Based on Force Information in Robot-Assisted Decompressive Laminectomy.
    Qi X; Sun Y; Ma X; Hu Y; Zhang J; Tian W
    Adv Exp Med Biol; 2018; 1093():263-279. PubMed ID: 30306487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniature robotic guidance for spine surgery--introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres.
    Barzilay Y; Liebergall M; Fridlander A; Knoller N
    Int J Med Robot; 2006 Jun; 2(2):146-53. PubMed ID: 17520625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State recognition of decompressive laminectomy with multiple information in robot-assisted surgery.
    Sun Y; Wang L; Jiang Z; Li B; Hu Y; Tian W
    Artif Intell Med; 2020 Jan; 102():101763. PubMed ID: 31980100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical bone grinding mechanism modeling and experimental studyfor damage minimization in craniotomy.
    Hu Y; Hu X; Fan Z; Liu Z; Zhang C; Fu W
    Proc Inst Mech Eng H; 2022 Mar; 236(3):320-328. PubMed ID: 34894878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 30 Years of Neurosurgical Robots: Review and Trends for Manipulators and Associated Navigational Systems.
    Smith JA; Jivraj J; Wong R; Yang V
    Ann Biomed Eng; 2016 Apr; 44(4):836-46. PubMed ID: 26467553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic and robot-assisted skull base neurosurgery: systematic review of current applications and future directions.
    Pangal DJ; Cote DJ; Ruzevick J; Yarovinsky B; Kugener G; Wrobel B; Ference EH; Swanson M; Hung AJ; Donoho DA; Giannotta S; Zada G
    Neurosurg Focus; 2022 Jan; 52(1):E15. PubMed ID: 34973668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic-assisted electrochemical drill-grinding of small holes with high-quality.
    Zhu X; Liu Y; Zhang J; Wang K; Kong H
    J Adv Res; 2020 May; 23():151-161. PubMed ID: 32123588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evaluation of machining forces, torque, and bone quality during skull bone grinding.
    Babbar A; Jain V; Gupta D
    Proc Inst Mech Eng H; 2020 Jun; 234(6):626-638. PubMed ID: 32181700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Robotic-Based Propeller Blade Sharpening Efficiency with a Laser-Vision Sensor and a Force Compliance Mechanism.
    Cheng YS; Shah SH; Yen SH; Ahmad AR; Lin CY
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-assisted Sistrunk's operation, total thyroidectomy, and neck dissection via a transaxillary and retroauricular (TARA) approach in papillary carcinoma arising in thyroglossal duct cyst and thyroid gland.
    Byeon HK; Ban MJ; Lee JM; Ha JG; Kim ES; Koh YW; Choi EC
    Ann Surg Oncol; 2012 Dec; 19(13):4259-61. PubMed ID: 23070784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling.
    Ko S; Nakazawa A; Kurose Y; Harada K; Mitsuishi M; Sora S; Shono N; Nakatomi H; Saito N; Morita A
    Neurosurg Focus; 2017 May; 42(5):E5. PubMed ID: 28463616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.