BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38569898)

  • 1. phylaGAN: data augmentation through conditional GANs and autoencoders for improving disease prediction accuracy using microbiome data.
    Sharma D; Lou W; Xu W
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38569898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Analysis of the Novel Conditional Deep Convolutional Neural Network Model, Using Conditional Deep Convolutional Generative Adversarial Network-Generated Synthetic and Augmented Brain Tumor Datasets for Image Classification.
    Onakpojeruo EP; Mustapha MT; Ozsahin DU; Ozsahin I
    Brain Sci; 2024 May; 14(6):. PubMed ID: 38928561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of Synthetic Near-Infrared Spectra via Generative Adversarial Network to Improve Wood Stiffness Prediction.
    Ali SD; Raut S; Dahlen J; Schimleck L; Bergman R; Zhang Z; Nasir V
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepMicroGen: a generative adversarial network-based method for longitudinal microbiome data imputation.
    Choi JM; Ji M; Watson LT; Zhang L
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37099704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving mixed-integer temporal modeling by generating synthetic data using conditional generative adversarial networks: A case study of fluid overload prediction in the intensive care unit.
    Rafiei A; Ghiasi Rad M; Sikora A; Kamaleswaran R
    Comput Biol Med; 2024 Jan; 168():107749. PubMed ID: 38011778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing prediction accuracy of pathogenic staging by sample augmentation with a GAN.
    Kwon C; Park S; Ko S; Ahn J
    PLoS One; 2021; 16(4):e0250458. PubMed ID: 33905431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving mortality prediction in Acute Pancreatitis by machine learning and data augmentation.
    Hameed MAB; Alamgir Z
    Comput Biol Med; 2022 Nov; 150():106077. PubMed ID: 36137318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TaxoNN: ensemble of neural networks on stratified microbiome data for disease prediction.
    Sharma D; Paterson AD; Xu W
    Bioinformatics; 2020 Nov; 36(17):4544-4550. PubMed ID: 32449747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic inference using generative adversarial networks.
    Smith ML; Hahn MW
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37669126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MB-GAN: Microbiome Simulation via Generative Adversarial Network.
    Rong R; Jiang S; Xu L; Xiao G; Xie Y; Liu DJ; Li Q; Zhan X
    Gigascience; 2021 Feb; 10(2):. PubMed ID: 33543271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: Example using antiretroviral therapy for HIV.
    Kuo NI; Garcia F; Sönnerborg A; Böhm M; Kaiser R; Zazzi M; ; Polizzotto M; Jorm L; Barbieri S
    J Biomed Inform; 2023 Aug; 144():104436. PubMed ID: 37451495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data augmentation for Human Activity Recognition with Generative Adversarial Networks.
    Lupion M; Cruciani F; Cleland I; Nugent C; Ortigosa PM
    IEEE J Biomed Health Inform; 2024 Feb; PP():. PubMed ID: 38345954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cotton Fusarium wilt diagnosis based on generative adversarial networks in small samples.
    Zhang Z; Ma L; Wei C; Yang M; Qin S; Lv X; Zhang Z
    Front Plant Sci; 2023; 14():1290774. PubMed ID: 38162306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data Augmentation of a Corrosion Dataset for Defect Growth Prediction of Pipelines Using Conditional Tabular Generative Adversarial Networks.
    Ma H; Geng M; Wang F; Zheng W; Ai Y; Zhang W
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TADA: phylogenetic augmentation of microbiome samples enhances phenotype classification.
    Sayyari E; Kawas B; Mirarab S
    Bioinformatics; 2019 Jul; 35(14):i31-i40. PubMed ID: 31510701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepMicro: deep representation learning for disease prediction based on microbiome data.
    Oh M; Zhang L
    Sci Rep; 2020 Apr; 10(1):6026. PubMed ID: 32265477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Speech Emotion Recognition With Adversarial Data Augmentation Network.
    Yi L; Mak MW
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):172-184. PubMed ID: 33035171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.