These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38570015)

  • 41. Harnessing Glycolipids for Supramolecular Gelation: A Contemporary Review.
    Holey SA; Nayak RR
    ACS Omega; 2024 Jun; 9(24):25513-25538. PubMed ID: 38911776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Supramolecular gels formed from multi-component low molecular weight species.
    Buerkle LE; Rowan SJ
    Chem Soc Rev; 2012 Sep; 41(18):6089-102. PubMed ID: 22677951
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facile one-pot multicomponent synthesis of peptoid based gelators as novel scaffolds for drug incorporation and pH-sensitive release.
    Sebastian S; Yadav E; Bhardwaj P; Maruthi M; Kumar D; Gupta MK
    J Mater Chem B; 2023 Oct; 11(41):9975-9986. PubMed ID: 37823277
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hybrid Self-Assembled Gel Beads for Tuneable pH-Controlled Rosuvastatin Delivery.
    Piras CC; Patterson AK; Smith DK
    Chemistry; 2021 Sep; 27(52):13203-13210. PubMed ID: 34346527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional supramolecular gels based on poly(benzyl ether) dendrons and dendrimers.
    Feng Y; Liu ZX; Chen H; Fan QH
    Chem Commun (Camb); 2022 Aug; 58(63):8736-8753. PubMed ID: 35861166
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Short Peptides as Tunable, Switchable, and Strong Gelators.
    Schweitzer-Stenner R; Alvarez NJ
    J Phys Chem B; 2021 Jun; ():. PubMed ID: 34133176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Role of Functional Groups in Tuning the Self-Assembly Modes and Physical Properties of Multicomponent Gels.
    Sudhakaran Jayabhavan S; Kuppadakkath G; Damodaran KK
    Chempluschem; 2023 Aug; 88(8):e202300302. PubMed ID: 37407430
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Shaping and Patterning Supramolecular Materials─Stem Cell-Compatible Dual-Network Hybrid Gels Loaded with Silver Nanoparticles.
    Piras CC; Mahon CS; Genever PG; Smith DK
    ACS Biomater Sci Eng; 2022 May; 8(5):1829-1840. PubMed ID: 35364810
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fine-Tuning of Molecular Structures to Generate Carbohydrate Based Super Gelators and Their Applications for Drug Delivery and Dye Absorption.
    Bietsch J; Olson M; Wang G
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. P-Type Low-Molecular-Weight Hydrogelators.
    Draper ER; Dietrich B; Brasnett C; Sproules S; McDonald TO; Seddon AM; Adams DJ
    Macromol Rapid Commun; 2018 Sep; 39(17):e1700746. PubMed ID: 29333741
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coordination polymer gels with important environmental and biological applications.
    Jung JH; Lee JH; Silverman JR; John G
    Chem Soc Rev; 2013 Feb; 42(3):924-36. PubMed ID: 23192282
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatial and temporal diffusion-control of dynamic multi-domain self-assembled gels.
    Schlichter L; Piras CC; Smith DK
    Chem Sci; 2021 Feb; 12(11):4162-4172. PubMed ID: 34163689
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural determinants in a library of low molecular weight gelators.
    Morris KL; Chen L; Rodger A; Adams DJ; Serpell LC
    Soft Matter; 2015 Feb; 11(6):1174-81. PubMed ID: 25562785
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators.
    Aryal P; Morris J; Adhikari SB; Bietsch J; Wang G
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Supramolecular Assembly of Peptide and Metallopeptide Gelators and Their Stimuli-Responsive Properties in Biomedical Applications.
    Falcone N; Kraatz HB
    Chemistry; 2018 Sep; 24(54):14316-14328. PubMed ID: 29667727
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides.
    Giraud T; Bouguet-Bonnet S; Stébé MJ; Richaudeau L; Pickaert G; Averlant-Petit MC; Stefan L
    Nanoscale; 2021 Jun; 13(23):10566-10578. PubMed ID: 34100504
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-assembly of esters of arjunolic acid into fibrous networks and the properties of their organogels.
    Bag BG; Dinda SK; Dey PP; Mallia VA; Weiss RG
    Langmuir; 2009 Aug; 25(15):8663-71. PubMed ID: 19391592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two-component gel-phase materials--highly tunable self-assembling systems.
    Hirst AR; Smith DK
    Chemistry; 2005 Sep; 11(19):5496-508. PubMed ID: 15966031
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications.
    Gomes V; Veloso SRS; Correa-Duarte MA; Ferreira PMT; Castanheira EMS
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613630
    [TBL] [Abstract][Full Text] [Related]  

  • 60. To gel or not to gel: correlating molecular gelation with solvent parameters.
    Lan Y; Corradini MG; Weiss RG; Raghavan SR; Rogers MA
    Chem Soc Rev; 2015 Oct; 44(17):6035-58. PubMed ID: 25941907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.