These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38570278)

  • 1. Lost in space: what single-cell RNA sequencing cannot tell you.
    Adema K; Schon MA; Nodine MD; Kohlen W
    Trends Plant Sci; 2024 Sep; 29(9):1018-1028. PubMed ID: 38570278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introducing single cell stereo-sequencing technology to transform the plant transcriptome landscape.
    Bawa G; Liu Z; Yu X; Tran LP; Sun X
    Trends Plant Sci; 2024 Feb; 29(2):249-265. PubMed ID: 37914553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ScRNA-seq and spatial transcriptomics: exploring the occurrence and treatment of coronary-related diseases starting from development.
    Liu C; Yang F; Su X; Zhang Z; Xing Y
    Front Cardiovasc Med; 2023; 10():1064949. PubMed ID: 37416923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Cell RNA Sequencing Technology Landscape in 2023.
    Qu HQ; Kao C; Hakonarson H
    Stem Cells; 2024 Jan; 42(1):1-12. PubMed ID: 37934608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging spatial transcriptomics data to recover cell locations in single-cell RNA-seq with CeLEry.
    Zhang Q; Jiang S; Schroeder A; Hu J; Li K; Zhang B; Dai D; Lee EB; Xiao R; Li M
    Nat Commun; 2023 Jul; 14(1):4050. PubMed ID: 37422469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adjustment of scRNA-seq data to improve cell-type decomposition of spatial transcriptomics.
    Wang L; Hu Y; Gao L
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in the Application of Single-Cell Transcriptomics in Plant Systems and Synthetic Biology.
    Islam MT; Liu Y; Hassan MM; Abraham PE; Merlet J; Townsend A; Jacobson D; Buell CR; Tuskan GA; Yang X
    Biodes Res; 2024; 6():0029. PubMed ID: 38435807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of high-throughput single-cell RNA sequencing data processing pipelines.
    Gao M; Ling M; Tang X; Wang S; Xiao X; Qiao Y; Yang W; Yu R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single cell RNA-sequencing: A powerful yet still challenging technology to study cellular heterogeneity.
    Ke M; Elshenawy B; Sheldon H; Arora A; Buffa FM
    Bioessays; 2022 Nov; 44(11):e2200084. PubMed ID: 36068142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing infectious disease by single-cell RNA sequencing: Progresses and perspectives.
    Luo G; Gao Q; Zhang S; Yan B
    Comput Struct Biotechnol J; 2020; 18():2962-2971. PubMed ID: 33106757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing.
    Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis.
    Carangelo G; Magi A; Semeraro R
    Front Genet; 2022; 13():994069. PubMed ID: 36263428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MLSpatial: A machine-learning method to reconstruct the spatial distribution of cells from scRNA-seq by extracting spatial features.
    Zhu M; Li C; Lv K; Guo H; Hou R; Tian G; Yang J
    Comput Biol Med; 2023 Jun; 159():106873. PubMed ID: 37105115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GTAD: a graph-based approach for cell spatial composition inference from integrated scRNA-seq and ST-seq data.
    Zhang T; Zhang Z; Li L; Dong B; Wang G; Zhang D
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38127088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics.
    Shen X; Zhao Y; Wang Z; Shi Q
    Lab Chip; 2022 Dec; 22(24):4774-4791. PubMed ID: 36254761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single-cell RNA sequencing.
    Cohen P; DeGrace EJ; Danziger O; Patel RS; Barrall EA; Bobrowski T; Kehrer T; Cupic A; Miorin L; García-Sastre A; Rosenberg BR
    Microbiol Spectr; 2023 Sep; 11(5):e0077623. PubMed ID: 37676044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell RNA Sequencing for Plant Research: Insights and Possible Benefits.
    Bawa G; Liu Z; Yu X; Qin A; Sun X
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.