These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38570546)

  • 21. Release of Moxifloxacin from Contact Lenses Using an In Vitro Eye Model: Impact of Artificial Tear Fluid Composition and Mechanical Rubbing.
    Phan CM; Bajgrowicz-Cieslak M; Subbaraman LN; Jones L
    Transl Vis Sci Technol; 2016 Nov; 5(6):3. PubMed ID: 27847690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro uptake and release of natamycin from conventional and silicone hydrogel contact lens materials.
    Phan CM; Subbaraman LN; Jones L
    Eye Contact Lens; 2013 Mar; 39(2):162-8. PubMed ID: 23392304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of In Vitro Wettability of Soft Contact Lenses Using Tear Supplements.
    Iwashita H; Itokawa T; Suzuki T; Okajima Y; Kakisu K; Hori Y
    Eye Contact Lens; 2021 May; 47(5):244-248. PubMed ID: 32443004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical comparison of Omafilcon A with four control materials.
    Young G; Bowers R; Hall B; Port M
    CLAO J; 1997 Oct; 23(4):249-58. PubMed ID: 9348449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of surface water characteristics of novel daily disposable contact lens materials, using refractive index shifts after wear.
    Schafer J; Steffen R; Reindel W; Chinn J
    Clin Ophthalmol; 2015; 9():1973-9. PubMed ID: 26543349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro Evaluation of the Location of Cholesteryl Ester Deposits on Monthly Replacement Silicone Hydrogel Contact Lens Materials.
    Qiao H; Luensmann D; Heynen M; Drolle E; Subbaraman LN; Scales C; Riederer D; Fadli Z; Jones L
    Clin Ophthalmol; 2020; 14():2821-2828. PubMed ID: 33061266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micromechanical measurement of adhesion of dehydrating silicone hydrogel contact lenses to corneal tissue.
    Zhu D; Liu Y; Gilbert JL
    Acta Biomater; 2021 Jun; 127():242-251. PubMed ID: 33812075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uptake and Release of a Multipurpose Solution Biocide (MAP-D) From Hydrogel and Silicone Hydrogel Contact Lenses Using a Radiolabel Methodology.
    Yee A; Phan CM; Chan VWY; Heynen M; Jones L
    Eye Contact Lens; 2021 May; 47(5):249-255. PubMed ID: 32604136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ocular response to environmental variations in contact lens wearers.
    López-de la Rosa A; Martín-Montañez V; López-Miguel A; Fernández I; Calonge M; González-Méijome JM; González-García MJ
    Ophthalmic Physiol Opt; 2017 Jan; 37(1):60-70. PubMed ID: 28030882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Analysis of the Osmoprotective Effects of Daily Disposable Contact Lens Packaging Solutions on Human Corneal Epithelial Cells.
    VanDerMeid KR; Byrnes MG; Millard K; Scheuer CA; Phatak NR; Reindel W
    Clin Ophthalmol; 2024; 18():247-258. PubMed ID: 38292853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lysozyme Deposition on Contact Lenses in an In Vitro Blink-Simulation Eye Model Versus a Static Vial Deposition Model.
    Chan VWY; Phan CM; Ngo W; Jones L
    Eye Contact Lens; 2021 Jul; 47(7):388-393. PubMed ID: 33840748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of hydrogel and silicone hydrogel contact lenses on the measurement of intraocular pressure with rebound tonometry.
    Zeri F; Calcatelli P; Donini B; Lupelli L; Zarrilli L; Swann PG
    Cont Lens Anterior Eye; 2011 Dec; 34(6):260-5. PubMed ID: 21636312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro analysis of the interaction of tear film inflammatory markers with contemporary contact lens materials.
    Mirzapour P; McCanna DJ; Jones L
    Cont Lens Anterior Eye; 2021 Oct; 44(5):101430. PubMed ID: 33771440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of protein deposition on contact lens tear film stability.
    Rabiah NI; Scales CW; Fuller GG
    Colloids Surf B Biointerfaces; 2019 Aug; 180():229-236. PubMed ID: 31054463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo dehydration of silicone hydrogel contact lenses.
    Morgan PB; Efron N
    Eye Contact Lens; 2003 Jul; 29(3):173-6. PubMed ID: 12861112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An imaging-based analysis of lipid deposits on contact lens surfaces.
    Panthi S; Nichols JJ
    Cont Lens Anterior Eye; 2018 Aug; 41(4):342-350. PubMed ID: 29241942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrast sensitivity function with soft contact lens wear.
    Sapkota K; Franco S; Lira M
    J Optom; 2020; 13(2):96-101. PubMed ID: 32063505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of contact lens wettability after prolonged visual device use under low humidity conditions.
    Guillon M; Patel T; Patel K; Gupta R; Maissa CA
    Cont Lens Anterior Eye; 2019 Aug; 42(4):386-391. PubMed ID: 30954378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Release of Fluconazole from Contact Lenses Using a Novel In Vitro Eye Model.
    Phan CM; Bajgrowicz M; Gao H; Subbaraman LN; Jones LW
    Optom Vis Sci; 2016 Apr; 93(4):387-94. PubMed ID: 26641022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in the daily symptoms associated with the silicone hydrogel contact lens wear.
    Martin R; Sanchez I; de la Rosa C; de Juan V; Rodriguez G; de Paz I; Zalama M
    Eye Contact Lens; 2010 Jan; 36(1):49-53. PubMed ID: 20009943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.