These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 38570620)
1. Question-answering system extracts information on injection drug use from clinical notes. Mahbub M; Goethert I; Danciu I; Knight K; Srinivasan S; Tamang S; Rozenberg-Ben-Dror K; Solares H; Martins S; Trafton J; Begoli E; Peterson GD Commun Med (Lond); 2024 Apr; 4(1):61. PubMed ID: 38570620 [TBL] [Abstract][Full Text] [Related]
2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
3. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records. Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734 [TBL] [Abstract][Full Text] [Related]
4. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing. Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754 [TBL] [Abstract][Full Text] [Related]
5. A Large Language Model-Based Generative Natural Language Processing Framework Finetuned on Clinical Notes Accurately Extracts Headache Frequency from Electronic Health Records. Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I medRxiv; 2023 Oct; ():. PubMed ID: 37873417 [TBL] [Abstract][Full Text] [Related]
6. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data. Sezgin E; Hussain SA; Rust S; Huang Y JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467 [TBL] [Abstract][Full Text] [Related]
7. Applying generative AI with retrieval augmented generation to summarize and extract key clinical information from electronic health records. Alkhalaf M; Yu P; Yin M; Deng C J Biomed Inform; 2024 Aug; 156():104662. PubMed ID: 38880236 [TBL] [Abstract][Full Text] [Related]
8. Automated Recognition of Visual Acuity Measurements in Ophthalmology Clinical Notes Using Deep Learning. Bernstein IA; Koornwinder A; Hwang HH; Wang SY Ophthalmol Sci; 2024; 4(2):100371. PubMed ID: 37868799 [TBL] [Abstract][Full Text] [Related]
10. Natural Language Processing Algorithm to Extract Multiple Myeloma Stage From Oncology Notes in the Veterans Affairs Healthcare System. Goryachev SD; Yildirim C; DuMontier C; La J; Dharne M; Gaziano JM; Brophy MT; Munshi NC; Driver JA; Do NV; Fillmore NR JCO Clin Cancer Inform; 2024 Jul; 8():e2300197. PubMed ID: 39038255 [TBL] [Abstract][Full Text] [Related]
11. Identifying injection drug use and estimating population size of people who inject drugs using healthcare administrative datasets. Janjua NZ; Islam N; Kuo M; Yu A; Wong S; Butt ZA; Gilbert M; Buxton J; Chapinal N; Samji H; Chong M; Alvarez M; Wong J; Tyndall MW; Krajden M; Int J Drug Policy; 2018 May; 55():31-39. PubMed ID: 29482150 [TBL] [Abstract][Full Text] [Related]
12. Automated identification of wound information in clinical notes of patients with heart diseases: Developing and validating a natural language processing application. Topaz M; Lai K; Dowding D; Lei VJ; Zisberg A; Bowles KH; Zhou L Int J Nurs Stud; 2016 Dec; 64():25-31. PubMed ID: 27668855 [TBL] [Abstract][Full Text] [Related]
13. Detection of Personal and Family History of Suicidal Thoughts and Behaviors using Deep Learning and Natural Language Processing: A Multi-Site Study. Adekkanattu P; Furmanchuk A; Wu Y; Pathak A; Patra BG; Bost S; Morrow D; Wang GH; Yang Y; Forrest NJ; Luo Y; Walunas TL; Jenny WL; Gelad W; Bian J; Bao Y; Weiner M; Oslin D; Pathak J Res Sq; 2024 Mar; ():. PubMed ID: 38559051 [TBL] [Abstract][Full Text] [Related]
14. BioASQ-QA: A manually curated corpus for Biomedical Question Answering. Krithara A; Nentidis A; Bougiatiotis K; Paliouras G Sci Data; 2023 Mar; 10(1):170. PubMed ID: 36973320 [TBL] [Abstract][Full Text] [Related]
15. Facilitating clinical research through automation: Combining optical character recognition with natural language processing. Hom J; Nikowitz J; Ottesen R; Niland JC Clin Trials; 2022 Oct; 19(5):504-511. PubMed ID: 35608136 [TBL] [Abstract][Full Text] [Related]
16. Strategies to Address the Lack of Labeled Data for Supervised Machine Learning Training With Electronic Health Records: Case Study for the Extraction of Symptoms From Clinical Notes. Humbert-Droz M; Mukherjee P; Gevaert O JMIR Med Inform; 2022 Mar; 10(3):e32903. PubMed ID: 35285805 [TBL] [Abstract][Full Text] [Related]
17. Extraction of Substance Use Information From Clinical Notes: Generative Pretrained Transformer-Based Investigation. Shah-Mohammadi F; Finkelstein J JMIR Med Inform; 2024 Aug; 12():e56243. PubMed ID: 39037700 [TBL] [Abstract][Full Text] [Related]
18. Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models. Dandala B; Joopudi V; Tsou CH; Liang JJ; Suryanarayanan P JMIR Med Inform; 2020 Jul; 8(7):e18417. PubMed ID: 32459650 [TBL] [Abstract][Full Text] [Related]
19. Identifying Diabetes Related-Complications in a Real-World Free-Text Electronic Medical Records in Hebrew Using Natural Language Processing Techniques. Saban M; Lutski M; Zucker I; Uziel M; Ben-Moshe D; Israel A; Vinker S; Golan-Cohen A; Laufer I; Green I; Eldor R; Merzon E J Diabetes Sci Technol; 2024 Jan; ():19322968241228555. PubMed ID: 38288672 [TBL] [Abstract][Full Text] [Related]
20. Diagnosing post-traumatic stress disorder using electronic medical record data. Zafari H; Kosowan L; Zulkernine F; Signer A Health Informatics J; 2021; 27(4):14604582211053259. PubMed ID: 34818936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]