These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38570686)

  • 1. Phase-change memory via a phase-changeable self-confined nano-filament.
    Park SO; Hong S; Sung SJ; Kim D; Seo S; Jeong H; Park T; Cho WJ; Kim J; Choi S
    Nature; 2024 Apr; 628(8007):293-298. PubMed ID: 38570686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Structured Conductive Filament Nanoheater for Chalcogenide Phase Transition.
    You BK; Byun M; Kim S; Lee KJ
    ACS Nano; 2015 Jun; 9(6):6587-94. PubMed ID: 26039415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ta-Doped Sb
    Xue Y; Yan S; Lv S; Song S; Song Z
    Nanomicro Lett; 2021 Jan; 13(1):33. PubMed ID: 34138214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating Selectorless Property within Niobium Devices for Storage Applications.
    Chen PH; Lin CY; Chang TC; Eshraghian JK; Chao YT; Lu WD; Sze SM
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2343-2350. PubMed ID: 34978410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of solid-liquid interfacial thermodynamics on phase-change memory RESET scaling.
    Lewis M; Brush LN
    Nanotechnology; 2022 Feb; 33(20):. PubMed ID: 35108689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-aligned nanotube-nanowire phase change memory.
    Xiong F; Bae MH; Dai Y; Liao AD; Behnam A; Carrion EA; Hong S; Ielmini D; Pop E
    Nano Lett; 2013 Feb; 13(2):464-9. PubMed ID: 23259592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure characterization, phase transition, and device application of phase-change memory materials.
    Jiang K; Li S; Chen F; Zhu L; Li W
    Sci Technol Adv Mater; 2023; 24(1):2252725. PubMed ID: 37745781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance On-Chip Racetrack Resonator Based on GSST-Slot for In-Memory Computing.
    Zhu H; Lu Y; Cai L
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Energy Amorphization of Ti1Sb2Te5 Phase Change Alloy Induced by TiTe2 Nano-Lamellae.
    Ding K; Rao F; Lv S; Cheng Y; Wu L; Song Z
    Sci Rep; 2016 Jul; 6():30645. PubMed ID: 27469931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromorphic Photonic Memory Devices Using Ultrafast, Non-Volatile Phase-Change Materials.
    Chen X; Xue Y; Sun Y; Shen J; Song S; Zhu M; Song Z; Cheng Z; Zhou P
    Adv Mater; 2023 Sep; 35(37):e2203909. PubMed ID: 35713563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonvolatile Multistates Memories for High-Density Data Storage.
    Cao Q; Lü W; Wang XR; Guan X; Wang L; Yan S; Wu T; Wang X
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42449-42471. PubMed ID: 32812741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices.
    Aryana K; Gaskins JT; Nag J; Stewart DA; Bai Z; Mukhopadhyay S; Read JC; Olson DH; Hoglund ER; Howe JM; Giri A; Grobis MK; Hopkins PE
    Nat Commun; 2021 Feb; 12(1):774. PubMed ID: 33536411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory.
    Wu X; Khan AI; Lee H; Hsu CF; Zhang H; Yu H; Roy N; Davydov AV; Takeuchi I; Bao X; Wong HP; Pop E
    Nat Commun; 2024 Jan; 15(1):13. PubMed ID: 38253559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memristive and CMOS Devices for Neuromorphic Computing.
    Milo V; Malavena G; Monzio Compagnoni C; Ielmini D
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the filament rupture degree of threshold switching device for self-selective and low-current nonvolatile memory application.
    Zhao X; Niu J; Yang Y; Xiao X; Chen R; Wu Z; Zhang Y; Lv H; Long S; Liu Q; Jiang C; Liu M
    Nanotechnology; 2020 Apr; 31(14):144002. PubMed ID: 31860888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sc-Centered Octahedron Enables High-Speed Phase Change Memory with Improved Data Retention and Reduced Power Consumption.
    Wang Y; Guo T; Liu G; Li T; Lv S; Song S; Cheng Y; Song W; Ren K; Song Z
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10848-10855. PubMed ID: 30810295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can conventional phase-change memory devices be scaled down to single-nanometre dimensions?
    Hayat H; Kohary K; Wright CD
    Nanotechnology; 2017 Jan; 28(3):035202. PubMed ID: 27934782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Y-Doped Sb
    Liu B; Liu W; Li Z; Li K; Wu L; Zhou J; Song Z; Sun Z
    ACS Appl Mater Interfaces; 2020 May; 12(18):20672-20679. PubMed ID: 32283921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory.
    Xia M; Zhu M; Wang Y; Song Z; Rao F; Wu L; Cheng Y; Song S
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7627-34. PubMed ID: 25805549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the Atomic Structure of Bulk Binary Ga-Te Glasses with Surprising Nanotectonic Features for Phase-Change Memory Applications.
    Bokova M; Tverjanovich A; Benmore CJ; Fontanari D; Sokolov A; Khomenko M; Kassem M; Ozheredov I; Bychkov E
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37363-37379. PubMed ID: 34318661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.