BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38570944)

  • 1. Prototype development and evaluation of a hyperspectral lidar optical receiving system.
    Qian L; Wu D; Liu D; Shi S; Song S; Gong W
    Opt Express; 2024 Mar; 32(7):10786-10800. PubMed ID: 38570944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared detector module for airborne hyperspectral LiDAR: design and demonstration.
    Qian L; Wu D; Liu D; Zhong L; Shi S; Song S; Gong W
    Appl Opt; 2023 Mar; 62(8):2161-2167. PubMed ID: 37133106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical system design for a hyperspectral imaging lidar using supercontinuum laser and its preliminary performance.
    Qian L; Wu D; Zhou X; Zhong L; Wei W; Wang Y; Shi S; Song S; Gong W; Liu D
    Opt Express; 2021 May; 29(11):17542-17553. PubMed ID: 34154295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter.
    Chen Y; Li W; Hyyppä J; Wang N; Jiang C; Meng F; Tang L; Puttonen E; Li C
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of the Pulse Signal Decay Effect of Full-Waveform Hyperspectral LiDAR.
    Zhang C; Gao S; Niu Z; Pei J; Bi K; Sun G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the fraction of absorbed photosynthetically active radiation (fPAR) in maize canopies using LiDAR data and hyperspectral imagery.
    Qin H; Wang C; Zhao K; Xi X
    PLoS One; 2018; 13(5):e0197510. PubMed ID: 29813094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperspectral lidar point cloud segmentation based on geometric and spectral information.
    Chen B; Shi S; Sun J; Gong W; Yang J; Du L; Guo K; Wang B; Chen B
    Opt Express; 2019 Aug; 27(17):24043-24059. PubMed ID: 31510299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercontinuum-based hyperspectral LiDAR for precision laser scanning.
    Ray P; Salido-Monzú D; Camenzind SL; Wieser A
    Opt Express; 2023 Sep; 31(20):33486-33499. PubMed ID: 37859130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in Northeast China.
    Zhong H; Lin W; Liu H; Ma N; Liu K; Cao R; Wang T; Ren Z
    Front Plant Sci; 2022; 13():964769. PubMed ID: 36212338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-channel hyperspectral LiDAR with a supercontinuum laser source.
    Chen Y; Räikkönen E; Kaasalainen S; Suomalainen J; Hakala T; Hyyppä J; Chen R
    Sensors (Basel); 2010; 10(7):7057-66. PubMed ID: 22163589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral missing color correction based on an adaptive parameter fitting model.
    Wang T; Liu D; Xue Z; Wan X
    Opt Express; 2023 Feb; 31(5):8561-8574. PubMed ID: 36859968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote Nanoscopy with Infrared Elastic Hyperspectral Lidar.
    Müller L; Li M; Månefjord H; Salvador J; Reistad N; Hernandez J; Kirkeby C; Runemark A; Brydegaard M
    Adv Sci (Weinh); 2023 May; 10(15):e2207110. PubMed ID: 36965063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength selection of dual-mechanism LiDAR with reflection and fluorescence spectra for plant detection.
    Chen B; Shi S; Gong W; Xu Q; Tang X; Bi S; Chen B
    Opt Express; 2023 Jan; 31(3):3660-3675. PubMed ID: 36785353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar.
    Yuan D; Mao Z; Chen P; He Y; Pan D
    Opt Express; 2022 Aug; 30(16):29564-29583. PubMed ID: 36299129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ and airborne hyperspectral data for detecting agricultural activities in a dense forest landscape.
    Rajesh CB; Kumar CVSSM; Jha SS; Ramachandran KI; Nidamanuri RR
    Data Brief; 2023 Oct; 50():109510. PubMed ID: 37663764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Coupled CNN-GCN-Based Classification for Hyperspectral and LiDAR Data.
    Wang L; Wang X
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.
    Hakkenberg CR; Peet RK; Urban DL; Song C
    Ecol Appl; 2018 Jan; 28(1):177-190. PubMed ID: 29024180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.