These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38571005)

  • 1. Conditional convolutional GAN-based adaptive demodulator for OAM-SK-FSO communication.
    Han Z; Chen X; Wang Y; Cai Y
    Opt Express; 2024 Mar; 32(7):11629-11642. PubMed ID: 38571005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 65,536-ary orbital angular momentum-shift keying free-space optical communication based on few-shot learning.
    Chen W; Lin Q; Chen W; Zhang Z; Zhuang Z; Su Z; Zhang L
    Opt Lett; 2023 Apr; 48(7):1886-1889. PubMed ID: 37221791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-step system for image receiving in OAM-SK-FSO link.
    Li Z; Su J; Zhao X
    Opt Express; 2020 Oct; 28(21):30520-30541. PubMed ID: 33115052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator.
    Tian Q; Li Z; Hu K; Zhu L; Pan X; Zhang Q; Wang Y; Tian F; Yin X; Xin X
    Opt Express; 2018 Oct; 26(21):27849-27864. PubMed ID: 30469843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication.
    Li J; Zhang M; Wang D; Wu S; Zhan Y
    Opt Express; 2018 Apr; 26(8):10494-10508. PubMed ID: 29715985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive turbulence compensation with a hybrid input-output algorithm in orbital angular momentum-based free-space optical communication.
    Yin X; Chang H; Cui X; Ma JX; Wang YJ; Wu GH; Zhang L; Xin X
    Appl Opt; 2018 Sep; 57(26):7644-7650. PubMed ID: 30461834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the orbital angular momentum of atmospheric turbulence for OAM-based free-space optical communication.
    Hu W; Yang J; Zhu L; Wang A
    Opt Express; 2023 Dec; 31(25):41060-41071. PubMed ID: 38087514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Orbital Angular Momentum Recognition Technology Based on a Convolutional Neural Network.
    Li X; Sun L; Huang J; Zeng F
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct prediction and compensation of atmospheric turbulence for free-space integer and fractional order OAM multiplexed transmission links.
    Wu Y; Wang A; Zhu L
    Opt Express; 2023 Oct; 31(22):36078-36095. PubMed ID: 38017765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 768-ary Laguerre-Gaussian-mode shift keying free-space optical communication based on convolutional neural networks.
    Luan H; Lin D; Li K; Meng W; Gu M; Fang X
    Opt Express; 2021 Jun; 29(13):19807-19818. PubMed ID: 34266083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode detection of misaligned orbital angular momentum beams based on convolutional neural network.
    Zhao Q; Hao S; Wang Y; Wang L; Wan X; Xu C
    Appl Opt; 2018 Dec; 57(35):10152-10158. PubMed ID: 30645219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-space 16-ary orbital angular momentum coded optical communication system based on chaotic interleaving and convolutional neural networks.
    El-Meadawy SA; Shalaby HMH; Ismail NA; Abd El-Samie FE; Farghal AEA
    Appl Opt; 2020 Aug; 59(23):6966-6976. PubMed ID: 32788788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous measurement of orbital angular momentum spectra in a turbulent atmosphere without probe beam compensation.
    Zhang H; Zheng W; Zheng G; Fu P; Qu J; Hoenders BJ; Cai Y; Yuan Y
    Opt Express; 2021 Sep; 29(19):30666-30674. PubMed ID: 34614787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive demodulation by deep-learning-based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence.
    Na Y; Ko DK
    Sci Rep; 2021 Dec; 11(1):23505. PubMed ID: 34873262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams.
    Yuan Y; Lei T; Li Z; Li Y; Gao S; Xie Z; Yuan X
    Sci Rep; 2017 Feb; 7():42276. PubMed ID: 28186198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication.
    Liu J; Wang P; Zhang X; He Y; Zhou X; Ye H; Li Y; Xu S; Chen S; Fan D
    Opt Express; 2019 Jun; 27(12):16671-16688. PubMed ID: 31252890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards fine recognition of orbital angular momentum modes through smoke.
    Qian Y; Chen H; Huo P; Wang X; Gao S; Zhang P; Gao H; Liu R; Li F
    Opt Express; 2022 Apr; 30(9):15172-15183. PubMed ID: 35473245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning approach to OAM beam demultiplexing via convolutional neural networks.
    Doster T; Watnik AT
    Appl Opt; 2017 Apr; 56(12):3386-3396. PubMed ID: 28430266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulence-resistant high-capacity free-space optical communications using OAM mode group multiplexing.
    Zhu L; Deng M; Lu B; Guo X; Wang A
    Opt Express; 2023 Apr; 31(9):14454-14463. PubMed ID: 37157309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar background noise mitigation using the orbital angular momentum mode in vertical FSO downlink transmissions.
    Lee JW; Choi JY; Hyun YJ; Han SK
    Opt Express; 2021 Oct; 29(21):33312-33321. PubMed ID: 34809145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.