These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38571060)

  • 1. Calculation and measurement of trapping stiffness in femtosecond optical tweezers.
    Li Y; Qin Y; Wang H; Huang L; Guo H; Jiang Y
    Opt Express; 2024 Mar; 32(7):12358-12367. PubMed ID: 38571060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Stable Trapping of Single Macromolecules in Solution.
    De AK; Roy D; Goswami D
    Proc SPIE Int Soc Opt Eng; 2010 Aug; 7762():. PubMed ID: 23814448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers.
    Sarshar M; Wong WT; Anvari B
    J Biomed Opt; 2014; 19(11):115001. PubMed ID: 25375348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intense femtosecond optical pulse shaping approaches to spatiotemporal control.
    Goswami D
    Front Chem; 2022; 10():1006637. PubMed ID: 36712993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lightsheet optical tweezer (LOT) for optical manipulation of microscopic particles and live cells.
    Mondal PP; Baro N; Singh A; Joshi P; Basumatary J
    Sci Rep; 2022 Jun; 12(1):10229. PubMed ID: 35715431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bessel beam optical tweezers for manipulating superparamagnetic beads.
    Andrade UMS; Garcia AM; Rocha MS
    Appl Opt; 2021 Apr; 60(12):3422-3429. PubMed ID: 33983247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials.
    van der Horst A; Forde NR
    Opt Express; 2008 Dec; 16(25):20987-1003. PubMed ID: 19065239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
    Ye F; Badman RP; Inman JT; Soltani M; Killian JL; Wang MD
    Nano Lett; 2016 Oct; 16(10):6661-6667. PubMed ID: 27689302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling local temperature in water using femtosecond optical tweezer.
    Mondal D; Goswami D
    Biomed Opt Express; 2015 Sep; 6(9):3190-6. PubMed ID: 26417491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond-pulsed plasmonic nanotweezers.
    Roxworthy BJ; Toussaint KC
    Sci Rep; 2012; 2():660. PubMed ID: 22993686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse laser assisted optical tweezers for biomedical applications.
    Sugiura T; Maeda S; Honda A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4479-81. PubMed ID: 23366922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers.
    van der Horst A; van Oostrum PD; Moroz A; van Blaaderen A; Dogterom M
    Appl Opt; 2008 Jun; 47(17):3196-202. PubMed ID: 18545293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counter-propagating dual-trap optical tweezers based on linear momentum conservation.
    Ribezzi-Crivellari M; Huguet JM; Ritort F
    Rev Sci Instrum; 2013 Apr; 84(4):043104. PubMed ID: 23635178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective transport of chiral spheres using focused femtosecond laser pulses.
    Ali R; Wu Y
    Opt Express; 2023 Aug; 31(18):29716-29729. PubMed ID: 37710766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell optoporation and transfection using femtosecond laser and optical tweezers.
    Waleed M; Hwang SU; Kim JD; Shabbir I; Shin SM; Lee YG
    Biomed Opt Express; 2013; 4(9):1533-47. PubMed ID: 24049675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the Optical Trapping of a Single Virus by Quantum Dots Tagging Increases Virus Polarizability and Trap Stiffness.
    Xu D; Li J; Liu L; Tang H
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):55174-55182. PubMed ID: 37966372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer.
    Kotnala A; Gordon R
    Nano Lett; 2014 Feb; 14(2):853-6. PubMed ID: 24404888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementing two-photon fluorescence detection with backscatter detection to decipher multiparticle dynamics inside a nonlinear laser trap.
    Devi A; Yadav S; De AK
    Sci Rep; 2023 Jan; 13(1):739. PubMed ID: 36639412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.