These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38571077)

  • 1. Tandem neural network-assisted inverse design of highly efficient diffractive slanted waveguide grating.
    Luo M; Lee SS
    Opt Express; 2024 Mar; 32(7):12587-12600. PubMed ID: 38571077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization.
    Ni D; Cheng D; Liu Y; Wang X; Yao C; Yang T; Chi C; Wang Y
    Opt Express; 2022 Jul; 30(14):24523-24543. PubMed ID: 36237005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced diffraction efficiency with angular selectivity by inserting an optical interlayer into a diffractive waveguide for augmented reality displays.
    Lin Y; Xu H; Shi R; Lu L; Zhang ST; Li D
    Opt Express; 2022 Aug; 30(17):31244-31255. PubMed ID: 36242211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grating waveguides by machine learning for augmented reality.
    Chen X; Lin D; Zhang T; Zhao Y; Liu H; Cui Y; Hou C; He J; Liang S
    Appl Opt; 2023 Apr; 62(11):2924-2935. PubMed ID: 37133137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented reality display with high eyebox uniformity over the full field of view based on a random mask grating.
    Wu Y; Pan C; Lu C; Zhang Y; Zhang L; Huang Z
    Opt Express; 2024 May; 32(10):17409-17423. PubMed ID: 38858925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensated DOE in a VHG-based waveguide display to improve uniformity.
    Guo M; Guo Y; Cai J; Wang Z; Lv G; Feng Q
    Opt Express; 2024 May; 32(10):18017-18032. PubMed ID: 38858968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of single-layer color echelle grating optical waveguide for augmented-reality display.
    Guo Q; Zhang S; Zhang J; Chen CP
    Opt Express; 2023 Jan; 31(3):3954-3969. PubMed ID: 36785375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of gratings in a diffractive waveguide using relative-direction-cosine diagrams.
    Kong D; Zhao Z; Shi X; Li X; Wang B; Xue Z; Li S
    Opt Express; 2021 Oct; 29(22):36720-36733. PubMed ID: 34809076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a high-performance in-coupling grating using differential evolution algorithm for waveguide display.
    Pan C; Liu Z; Pang Y; Zheng X; Cai H; Zhang Y; Huang Z
    Opt Express; 2018 Oct; 26(20):26646-26662. PubMed ID: 30469747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact pupil-expansion AR-HUD based on surface-relief grating.
    Dai G; Yang H; Yin L; Ren K; Liu J; Zhang X; Zhang J
    Opt Express; 2024 Feb; 32(5):6917-6928. PubMed ID: 38439386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subwavelength dielectric grating structures with tunable higher order resonance for achromatic augmented reality display.
    Shi X; Shen H; Xue Z; Wang B
    Appl Opt; 2022 Aug; 61(24):7245-7254. PubMed ID: 36256346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple measuring technique for the diffraction efficiency of slanted volume gratings at various wavelengths.
    Shimizu A; Sakuda K
    Appl Opt; 1997 Aug; 36(23):5769-74. PubMed ID: 18259404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications.
    Jin W; Chiang KS
    Opt Express; 2018 Jun; 26(12):15289-15299. PubMed ID: 30114778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angular uniformity improvement of diffractive waveguide display based on region geometry optimization.
    Li Z; Gao C; Li H; Wu R; Liu X
    Appl Opt; 2024 Apr; 63(10):2494-2502. PubMed ID: 38568528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable grating surfaces with high diffractive efficiency optimized by deep neural networks.
    Qian K; Zhang Y
    Opt Lett; 2022 Sep; 47(18):4660-4663. PubMed ID: 36107057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metagrating meets the geometry-based efficiency limit for AR waveguide in-couplers.
    Goodsell J; Xiong P; Nikolov DK; Vamivakas AN; Rolland JP
    Opt Express; 2023 Jan; 31(3):4599-4614. PubMed ID: 36785423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical efficiency limit of diffractive input couplers in augmented reality waveguides.
    Zhao Z; Lee YH; Feng X; Escuti MJ; Lu L; Silverstein B
    Opt Express; 2024 Mar; 32(7):12340-12357. PubMed ID: 38571059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of waveguide with double layer diffractive optical elements for augmented reality displays.
    Zhang J; Liu S; Zhang W; Jiang S; Ma D; Xu L; Yang M; Jiao Q; Tan X
    Sci Rep; 2024 Oct; 14(1):24310. PubMed ID: 39415000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient coupling to a waveguide by combined gratings in a holographic waveguide display system.
    Yang L; Tu Y; Shi Z; Guo J; Wang L; Zhang Y; Li X; Wang B
    Appl Opt; 2018 Dec; 57(35):10135-10145. PubMed ID: 30645218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of gradient period polarization volume gratings for augmented reality displays.
    Yang C; Wei R; Yang W; Weng Y; Gu Y; Wang C; Shen Z; Wang B; Zhang Y
    Opt Express; 2024 Jun; 32(12):21243-21257. PubMed ID: 38859483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.