BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38571151)

  • 21. Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS
    Li H; Chen B; Qin M; Wang L
    Opt Express; 2020 Jan; 28(1):205-215. PubMed ID: 32118951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong coupling between monolayer quantum emitter WS
    Lv F; Wang Z; Huang Y; Chen J; La J; Wu D; Guo Z; Liu Y; Zhang Y; Wang Y; Wang W
    Opt Lett; 2022 Jan; 47(1):190-193. PubMed ID: 34951914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling optical properties of metallic multi-shell nanoparticles through suppressed surface plasmon resonance.
    Acapulco JAI; Hong S; Kim SK; Park S
    J Colloid Interface Sci; 2016 Jan; 461():376-382. PubMed ID: 26414420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Au@MoS
    Li Y; Cain JD; Hanson ED; Murthy AA; Hao S; Shi F; Li Q; Wolverton C; Chen X; Dravid VP
    Nano Lett; 2016 Dec; 16(12):7696-7702. PubMed ID: 27782405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling.
    Niu Y; Xu H; Wei H
    Phys Rev Lett; 2022 Apr; 128(16):167402. PubMed ID: 35522488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MoS
    Zhang C; Ji C; Yu J; Li Z; Li Z; Li C; Xu S; Li W; Man B; Zhao X
    Opt Express; 2021 Nov; 29(23):38768-38780. PubMed ID: 34808922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals.
    Wen J; Wang H; Wang W; Deng Z; Zhuang C; Zhang Y; Liu F; She J; Chen J; Chen H; Deng S; Xu N
    Nano Lett; 2017 Aug; 17(8):4689-4697. PubMed ID: 28665614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmon-enhanced broadband absorption of MoS
    Zhou K; Song J; Lu L; Luo Z; Cheng Q
    Opt Express; 2019 Feb; 27(3):2305-2316. PubMed ID: 30732269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Room-Temperature Strong Coupling of Few-Exciton in a Monolayer WS
    Zhong J; Li JY; Liu J; Xiang Y; Feng H; Liu R; Li W; Wang XH
    Nano Lett; 2024 Feb; 24(5):1579-1586. PubMed ID: 38284987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons.
    Wersäll M; Cuadra J; Antosiewicz TJ; Balci S; Shegai T
    Nano Lett; 2017 Jan; 17(1):551-558. PubMed ID: 28005384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Normal-Incidence-Excited Strong Coupling between Excitons and Symmetry-Protected Quasi-Bound States in the Continuum in Silicon Nitride-WS
    Cao S; Dong H; He J; Forsberg E; Jin Y; He S
    J Phys Chem Lett; 2020 Jun; 11(12):4631-4638. PubMed ID: 32463697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent progress of gold nanostructures and their applications.
    Dahan KA; Li Y; Xu J; Kan C
    Phys Chem Chem Phys; 2023 Jul; 25(28):18545-18576. PubMed ID: 37409495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Realization of strong coupling between 2D excitons and cavity photons at room temperature.
    Zhao X; Yan Y; Cui Z; Liu F; Wang S; Sun L; Chen Y; Lu W
    Opt Lett; 2020 Dec; 45(24):6571-6574. PubMed ID: 33325842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent plasmon-exciton coupling in silver platelet-J-aggregate nanocomposites.
    DeLacy BG; Miller OD; Hsu CW; Zander Z; Lacey S; Yagloski R; Fountain AW; Valdes E; Anquillare E; Soljačić M; Johnson SG; Joannopoulos JD
    Nano Lett; 2015 Apr; 15(4):2588-93. PubMed ID: 25723653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Au and Ag/Au double-shells hollow nanoparticles with improved near infrared surface plasmon and photoluminescence properties.
    Ghosh Chaudhuri R; Paria S
    J Colloid Interface Sci; 2016 Jan; 461():15-19. PubMed ID: 26397903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strongly enhanced light-matter coupling of monolayer WS
    Maggiolini E; Polimeno L; Todisco F; Di Renzo A; Han B; De Giorgi M; Ardizzone V; Schneider C; Mastria R; Cannavale A; Pugliese M; De Marco L; Rizzo A; Maiorano V; Gigli G; Gerace D; Sanvitto D; Ballarini D
    Nat Mater; 2023 Aug; 22(8):964-969. PubMed ID: 37217703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes.
    Lin L; Wang M; Wei X; Peng X; Xie C; Zheng Y
    Nano Lett; 2016 Dec; 16(12):7655-7663. PubMed ID: 27960522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective.
    Zhang W; You JB; Liu J; Xiong X; Li Z; Png CE; Wu L; Qiu CW; Zhou ZK
    Nano Lett; 2021 Nov; 21(21):8979-8986. PubMed ID: 34644095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon-Exciton Coupling Using DNA Templates.
    Roller EM; Argyropoulos C; Högele A; Liedl T; Pilo-Pais M
    Nano Lett; 2016 Sep; 16(9):5962-6. PubMed ID: 27531635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.