These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38571219)

  • 1. Three-dimensional laser micromachining system with integrated sub-100 nm resolution in-situ measurement.
    Xu SJ; Yu YH; Tian ZN; Wang L; Li AW; Chen QD
    Opt Express; 2024 Mar; 32(6):9958-9966. PubMed ID: 38571219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-Shaping of Pure Aluminum in Long-Duration Wire Electrochemical Micromachining Using Bipolar Nanosecond Pulses.
    Bi X; Jia M; Meng L
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application.
    Cheng Y; Sugioka K; Midorikawa K
    Opt Express; 2005 Sep; 13(18):7225-32. PubMed ID: 19498745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Thermal Annealing on Femtosecond Laser Micromachined Glass Surfaces.
    Sala F; Paié P; Martínez Vázquez R; Osellame R; Bragheri F
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33670373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy.
    Tong T; Li J; Longtin JP
    Appl Opt; 2004 Mar; 43(9):1971-80. PubMed ID: 15065729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study of Laser Micromachining of PM Processed Ti Compact for Dental Implants Applications.
    Šugár P; Kováčik J; Šugárová J; Ludrovcová B
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31336851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Machining Localization and Surface Roughness in Wire Electrochemical Micromachining Using a Rotating Ultrasonic Helix Electrode.
    Ling S; Li M; Liu Y; Wang K; Jiang Y
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32707707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of capillary forces on relative humidity and the surface properties of femtosecond laser micromachined titanium.
    Lehr J; Kietzig AM
    J Colloid Interface Sci; 2015 Jun; 448():356-66. PubMed ID: 25746189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micromachining of Biolox Forte Ceramic Utilizing Combined Laser/Ultrasonic Processes.
    Abdo BMA; Mian SH; El-Tamimi A; Alkhalefah H; Moiduddin K
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution 3D nanoprinting based on two-step absorption via an integrated fiber-coupled laser diode.
    Liu X; Ding C; Gao X; Shen X; Tang M; Yang Z; Xu L; Kuang C; Liu X
    Opt Lett; 2023 Aug; 48(16):4300-4303. PubMed ID: 37582017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hole Depth Prediction in a Femtosecond Laser Drilling Process Using Deep Learning.
    Lim DW; Kim M; Choi P; Yoon SJ; Lee HT; Kim K
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Collection of Nanoparticles during Femtosecond Laser Machining in Air.
    Joy N; Kietzig AM
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromachining of Transparent Biocompatible Polymers Applied in Medicine Using Bursts of Femtosecond Laser Pulses.
    Kažukauskas E; Butkus S; Tokarski P; Jukna V; Barkauskas M; Sirutkaitis V
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33321925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Monolithic Gimbal Micro-Mirror Fabricated and Remotely Tuned with a Femtosecond Laser.
    Nazir SI; Bellouard Y
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31540118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction Model of Three-Dimensional Machined Potassium Dihydrogen Phosphate Surfaces Based on a Dynamic Response Machining System.
    Pang Q; Xiong J
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic abrasive machining system for optical fabrication with 0.1-mm spatial resolution.
    Matsuzawa Y; Hiraguri K; Hashizume H; Mimura H
    Rev Sci Instrum; 2022 Jan; 93(1):013101. PubMed ID: 35104977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse to pulse control for highly precise and efficient micromachining with femtosecond lasers.
    Mincuzzi G; Audouard E; Bourtereau A; Delaigue M; Faucon M; Hoenninger C; Mishchik K; Rebière A; Sailer S; Seweryn-Schnur A; Kling R
    Opt Express; 2020 Jun; 28(12):17209-17218. PubMed ID: 32679933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Self-Established "Machining-Measurement-Evaluation" Integrated Platform for Taper Cutting Experiments and Applications.
    Yang X; Li Z; Zhu L; Dong Y; Liu L; Miao L; Zhang X
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of surface morphology of Er:YAG laser-machined human bone.
    Pantawane MV; Chipper RT; Robertson WB; Khan RJK; Fick DP; Dahotre NB
    Lasers Med Sci; 2020 Sep; 35(7):1477-1485. PubMed ID: 31828574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of Rowland ghost on sub-micromachining using Femtosecond pulsed laser.
    Ngoi BK; Venkatakrishnan K; Tan B; Sivakumar N
    Opt Express; 2001 Apr; 8(9):492-6. PubMed ID: 19417845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.