These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38571236)

  • 21. Topologically optimized concentric-nanoring metalens with 1 mm diameter, 0.8 NA and 600 nm imaging resolution in the visible.
    Jin Z; Lin Y; Wang C; Han Y; Li B; Zhang J; Zhang X; Jia P; Hu Y; Liu Q; Duan H; Korvink JG; Li Y; Jiang H; Deng Y
    Opt Express; 2023 Mar; 31(6):10489-10499. PubMed ID: 37157594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing the spectral range of diffractive metalenses for polychromatic imaging applications.
    Engelberg J; Levy U
    Opt Express; 2017 Sep; 25(18):21637-21651. PubMed ID: 29041460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography.
    Ni H; Yuan G; Sun L; Chang N; Zhang D; Chen R; Jiang L; Chen H; Gu Z; Zhao X
    RSC Adv; 2018 May; 8(36):20117-20123. PubMed ID: 35541655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable manufacturing of high-index atomic layer-polymer hybrid metasurfaces for metaphotonics in the visible.
    Kim J; Seong J; Kim W; Lee GY; Kim S; Kim H; Moon SW; Oh DK; Yang Y; Park J; Jang J; Kim Y; Jeong M; Park C; Choi H; Jeon G; Lee KI; Yoon DH; Park N; Lee B; Lee H; Rho J
    Nat Mater; 2023 Apr; 22(4):474-481. PubMed ID: 36959502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging.
    Khorasaninejad M; Chen WT; Devlin RC; Oh J; Zhu AY; Capasso F
    Science; 2016 Jun; 352(6290):1190-4. PubMed ID: 27257251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polarization-insensitive GaN metalenses at visible wavelengths.
    Chen MH; Yen CW; Guo CC; Su VC; Kuan CH; Lin HY
    Sci Rep; 2021 Jul; 11(1):14541. PubMed ID: 34267286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multilevel diffractive lens in the MWIR with extended depth-of-focus and wide field-of-view.
    Hayward TM; Qadri SN; Brimhall N; Santiago F; Christophersen M; Dunay C; Espinola RL; Martin H; Cheung CCT; Menon R
    Opt Express; 2023 May; 31(10):15384-15391. PubMed ID: 37157641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printed stacked diffractive microlenses.
    Thiele S; Pruss C; Herkommer AM; Giessen H
    Opt Express; 2019 Nov; 27(24):35621-35630. PubMed ID: 31878731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-functional metalenses for the polarization-controlled generation of focalized vector beams in the telecom infrared.
    Vogliardi A; Ruffato G; Dal Zilio S; Bonaldo D; Romanato F
    Sci Rep; 2023 Jun; 13(1):10327. PubMed ID: 37365197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid broadband metalens operating at ultraviolet frequencies.
    Ali F; Aksu S
    Sci Rep; 2021 Jan; 11(1):2303. PubMed ID: 33504895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metasurface Fabrication by Cryogenic and Bosch Deep Reactive Ion Etching.
    Baracu AM; Dirdal CA; Avram AM; Dinescu A; Muller R; Jensen GU; Thrane PCV; Angelskår H
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33946701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compact sorting of optical vortices by means of diffractive transformation optics.
    Ruffato G; Massari M; Romanato F
    Opt Lett; 2017 Feb; 42(3):551-554. PubMed ID: 28146525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible.
    Richards CA; Ocier CR; Xie D; Gao H; Robertson T; Goddard LL; Christiansen RE; Cahill DG; Braun PV
    Nat Commun; 2023 May; 14(1):3119. PubMed ID: 37253761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-step manufacturing of hierarchical dielectric metalens in the visible.
    Yoon G; Kim K; Huh D; Lee H; Rho J
    Nat Commun; 2020 May; 11(1):2268. PubMed ID: 32385266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D nanoprinting for fiber-integrated achromatic diffractive lens.
    He M; Shen X; Liu X; Kuang C; Liu X
    Opt Lett; 2023 Oct; 48(20):5221-5224. PubMed ID: 37831832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverse Design and 3D Printing of a Metalens on an Optical Fiber Tip for Direct Laser Lithography.
    Hadibrata W; Wei H; Krishnaswamy S; Aydin K
    Nano Lett; 2021 Mar; 21(6):2422-2428. PubMed ID: 33720738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D direct laser writing of microstructured optical fiber tapers on single-mode fibers for mode-field conversion.
    Vanmol K; Baghdasaryan T; Vermeulen N; Saurav K; Watté J; Thienpont H; Van Erps J
    Opt Express; 2020 Nov; 28(24):36147-36158. PubMed ID: 33379716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-efficiency flexible multilevel photon sieves by single-step laser-based fabrication and optical analysis.
    Julian MN; MacDonnell DG; Gupta MC
    Appl Opt; 2019 Jan; 58(1):109-114. PubMed ID: 30645507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wafer-scale fabrication of nanoapertures using corner lithography.
    Burouni N; Berenschot E; Elwenspoek M; Sarajlic E; Leussink P; Jansen H; Tas N
    Nanotechnology; 2013 Jul; 24(28):285303. PubMed ID: 23792365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A High Aspect Ratio Inverse-Designed Holey Metalens.
    Lim SWD; Meretska ML; Capasso F
    Nano Lett; 2021 Oct; 21(20):8642-8649. PubMed ID: 34634205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.