These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38571261)

  • 1. Low-loss chalcogenide photonic devices with a secondary coating method.
    Wang T; An Y; Liu X; Gao Y; Xu T; Zhang W
    Opt Express; 2024 Mar; 32(6):10527-10534. PubMed ID: 38571261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-loss photonic device in Ge-Sb-S chalcogenide glass.
    Du Q; Huang Y; Li J; Kita D; Michon J; Lin H; Li L; Novak S; Richardson K; Zhang W; Hu J
    Opt Lett; 2016 Jul; 41(13):3090-3. PubMed ID: 27367109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-loss and high-Q Ta(2)O(5) based micro-ring resonator with inverse taper structure.
    Wu CL; Chen BT; Lin YY; Tien WC; Lin GR; Chiu YJ; Hung YJ; Chu AK; Lee CK
    Opt Express; 2015 Oct; 23(20):26268-75. PubMed ID: 26480140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor.
    Hu J; Tarasov V; Agarwal A; Kimerling L; Carlie N; Petit L; Richardson K
    Opt Express; 2007 Mar; 15(5):2307-14. PubMed ID: 19532465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of As
    Fan Z; Yan K; Zhang L; Qin J; Chen J; Wang R; Shen X
    Appl Opt; 2020 Feb; 59(6):1564-1568. PubMed ID: 32225660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides.
    Hu J; Tarasov V; Carlie N; Feng NN; Petit L; Agarwal A; Richardson K; Kimerling L
    Opt Express; 2007 Sep; 15(19):11798-807. PubMed ID: 19547543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Q, submicron-confined chalcogenide microring resonators.
    Yang Z; Zhang R; Wang Z; Xu P; Zhang W; Kang Z; Zheng J; Dai S; Wang R; Majumdar A
    Opt Express; 2021 Oct; 29(21):33225-33233. PubMed ID: 34809138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides.
    Jean P; Douaud A; Michaud-Belleau V; Messaddeq SH; Genest J; LaRochelle S; Messaddeq Y; Shi W
    Opt Lett; 2020 May; 45(10):2830-2833. PubMed ID: 32412479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of high quality GeSbSe reflowed and etched ring resonators.
    Grayson M; Xu B; Shanavas T; Zohrabi M; Bae K; Gopinath JT; Park W
    Opt Express; 2022 Aug; 30(17):31107-31121. PubMed ID: 36242200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Enhanced Infrared Absorption Spectroscopic Chalcogenide Waveguide Sensor Using a Silver Island Film.
    Pi M; Zheng C; Ji J; Zhao H; Peng Z; Lang J; Liang L; Zhang Y; Wang Y; Tittel FK
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32555-32563. PubMed ID: 34185988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing.
    Hu J; Carlie N; Feng NN; Petit L; Agarwal A; Richardson K; Kimerling L
    Opt Lett; 2008 Nov; 33(21):2500-2. PubMed ID: 18978900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Q chalcogenide racetrack resonators based on the multimode waveguide.
    Wang Z; Yang Z; Wang H; Zhang W; Wang R; Xu P
    Appl Opt; 2023 Mar; 62(9):2278-2282. PubMed ID: 37132866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2010 Nov; 18(24):25283-91. PubMed ID: 21164876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated waveguide coupled ultralow-loss multimode waveguides based on silicon nitride resonators.
    Cui S; Yu Y; Cao K; Pan Z; Gao X; Zhang X
    Opt Express; 2024 Jan; 32(2):2179-2187. PubMed ID: 38297753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of inductively-coupled-plasma reactive ion etching power on the etching rate and the surface roughness of a sapphire substrate.
    Chang CM; Shiao MH; Yang CT; Cheng CT; Hsueh WJ
    J Nanosci Nanotechnol; 2014 Oct; 14(10):8074-8. PubMed ID: 25942926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Q Thin-Film Lithium Niobate Microrings Fabricated with Wet Etching.
    Zhuang R; He J; Qi Y; Li Y
    Adv Mater; 2023 Jan; 35(3):e2208113. PubMed ID: 36325644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses.
    Zhang X; Zhou C; Luo Y; Yang Z; Zhang W; Li L; Xu P; Zhang P; Xu T
    Opt Express; 2022 Jan; 30(3):3866-3875. PubMed ID: 35209636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-low temperature silicon nitride photonic integration platform.
    Shao Z; Chen Y; Chen H; Zhang Y; Zhang F; Jian J; Fan Z; Liu L; Yang C; Zhou L; Yu S
    Opt Express; 2016 Feb; 24(3):1865-72. PubMed ID: 26906765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waveguiding properties of (Se,S)-based chalcogenide glass films and some applications to optical waveguide devices.
    Zembutsu S; Fukunishi S
    Appl Opt; 1979 Feb; 18(3):393-9. PubMed ID: 20208726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-loss flexible Parylene photonic waveguides for optical implants.
    Reddy JW; Chamanzar M
    Opt Lett; 2018 Sep; 43(17):4112-4115. PubMed ID: 30160729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.