BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38571281)

  • 21. Differential responses of circadian Per2 rhythms in cultured slices of discrete brain areas from rats showing internal desynchronisation by methamphetamine.
    Natsubori A; Honma K; Honma S
    Eur J Neurosci; 2013 Aug; 38(4):2566-71. PubMed ID: 23725367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
    Noguchi T; Leise TL; Kingsbury NJ; Diemer T; Wang LL; Henson MA; Welsh DK
    eNeuro; 2017; 4(4):. PubMed ID: 28828400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis.
    Amir S; Lamont EW; Robinson B; Stewart J
    J Neurosci; 2004 Jan; 24(4):781-90. PubMed ID: 14749422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scheduled feeding alters the timing of the suprachiasmatic nucleus circadian clock in dexras1-deficient mice.
    Bouchard-Cannon P; Cheng HY
    Chronobiol Int; 2012 Oct; 29(8):965-81. PubMed ID: 22928915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
    Carmona-Alcocer V; Abel JH; Sun TC; Petzold LR; Doyle FJ; Simms CL; Herzog ED
    J Neurosci; 2018 Feb; 38(6):1326-1334. PubMed ID: 29054877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Food-entrainable Oscillator Is a Complex of Non-SCN Activity Bout Oscillators Uncoupled From the SCN Circadian Pacemaker.
    Nishide S; Suzuki Y; Ono D; Honma S; Honma KI
    J Biol Rhythms; 2021 Dec; 36(6):575-588. PubMed ID: 34634956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recording and analysis of circadian rhythms in running-wheel activity in rodents.
    Verwey M; Robinson B; Amir S
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23380887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice.
    Noguchi T; Lo K; Diemer T; Welsh DK
    Neurosci Lett; 2016 Apr; 619():49-53. PubMed ID: 26930624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paclitaxel chemotherapy disrupts behavioral and molecular circadian clocks in mice.
    Sullivan KA; Grant CV; Jordan KR; Obrietan K; Pyter LM
    Brain Behav Immun; 2022 Jan; 99():106-118. PubMed ID: 34563619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Secretin receptor-deficient mice exhibit altered circadian rhythm in wheel-running activity.
    Sugiyama M; Nishijima I; Miyazaki S; Nakamura TJ
    Neurosci Lett; 2020 Mar; 722():134814. PubMed ID: 32027952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus.
    Patton AP; Chesham JE; Hastings MH
    J Neurosci; 2016 Sep; 36(36):9326-41. PubMed ID: 27605609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oak extracts modulate circadian rhythms of clock gene expression in vitro and wheel-running activity in mice.
    Haraguchi A; Du Y; Shiraishi R; Takahashi Y; Nakamura TJ; Shibata S
    Sleep Biol Rhythms; 2022 Apr; 20(2):255-266. PubMed ID: 38469255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning.
    Yamagata Y; Kobayashi S; Umeda T; Inoue A; Sakagami H; Fukaya M; Watanabe M; Hatanaka N; Totsuka M; Yagi T; Obata K; Imoto K; Yanagawa Y; Manabe T; Okabe S
    J Neurosci; 2009 Jun; 29(23):7607-18. PubMed ID: 19515929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic Light Exposure in the Middle of the Night Disturbs the Circadian System and Emotional Regulation.
    Ikeno T; Yan L
    J Biol Rhythms; 2016 Aug; 31(4):352-64. PubMed ID: 27075857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy.
    Yaw AM; Duong TV; Nguyen D; Hoffmann HM
    J Neurosci Res; 2021 Jan; 99(1):294-308. PubMed ID: 32128870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm.
    Mieda M; Ono D; Hasegawa E; Okamoto H; Honma K; Honma S; Sakurai T
    Neuron; 2015 Mar; 85(5):1103-16. PubMed ID: 25741730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavioural rhythm splitting in the CS mouse is related to clock gene expression outside the suprachiasmatic nucleus.
    Abe H; Honma S; Namihira M; Masubuchi S; Honma K
    Eur J Neurosci; 2001 Oct; 14(7):1121-8. PubMed ID: 11683904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct functions of Period2 and Period3 in the mouse circadian system revealed by in vitro analysis.
    Pendergast JS; Friday RC; Yamazaki S
    PLoS One; 2010 Jan; 5(1):e8552. PubMed ID: 20072700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct phase relationships between suprachiasmatic molecular rhythms, cerebral cortex molecular rhythms, and behavioral rhythms in early runner (CAST/EiJ) and nocturnal (C57BL/6J) mice.
    Jiang P; Franklin KM; Duncan MJ; O'Hara BF; Wisor JP
    Sleep; 2012 Oct; 35(10):1385-94. PubMed ID: 23024437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.