These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38571481)

  • 1. Effect of the Polar Head Type on the Surface Adsorption and Tribofilm Formation of Organic Friction Modifiers in Water-Based Lubricants.
    Marmorat T; Wijanarko W; Espallargas N; Khanmohammadi H
    Langmuir; 2024 Apr; 40(15):7920-7932. PubMed ID: 38571481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Position of Carbonyl Group Affects Tribological Performance of Ester Friction Modifiers.
    Song W; Campen S; Shiel H; Gattinoni C; Zhang J; Wong JSS
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14252-14262. PubMed ID: 38456401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of Organic Friction Modifier Additives.
    Fry BM; Moody G; Spikes HA; Wong JSS
    Langmuir; 2020 Feb; 36(5):1147-1155. PubMed ID: 31941274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Steel Hardness and Composition on the Boundary Lubricating Behavior of Low-Viscosity PAO Formulated with Dodecanoic Acid and Ionic Liquid Additives.
    Wijanarko W; Khanmohammadi H; Espallargas N
    Langmuir; 2022 Mar; 38(9):2777-2792. PubMed ID: 35195425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces.
    Ewen JP; Gattinoni C; Morgan N; Spikes HA; Dini D
    Langmuir; 2016 May; 32(18):4450-63. PubMed ID: 27064962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastable Lubricating Properties of Robust Self-Repairing Tribofilms Enabled by in Situ-Assembled Polydopamine Nanoparticles.
    Chen G; Zhao J; Chen K; Liu S; Zhang M; He Y; Luo J
    Langmuir; 2020 Feb; 36(4):852-861. PubMed ID: 31898907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium Nanoparticle-Enabled Ultrathick Tribofilm with Unique Composition.
    Kumara C; Leonard DN; Meyer HM; Luo H; Armstrong BL; Qu J
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31804-31812. PubMed ID: 30141901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribological properties of attapulgite/La
    Nan F; Zhou K; Liu S; Pu J; Fang Y; Ding W
    RSC Adv; 2018 May; 8(30):16947-16956. PubMed ID: 35540511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanochemistry of Zinc Dialkyldithiophosphate on Steel Surfaces under Elastohydrodynamic Lubrication Conditions.
    Zhang J; Ewen JP; Ueda M; Wong JSS; Spikes HA
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6662-6676. PubMed ID: 31913008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Tribofilm Formation in Boundary Lubrication Investigated Using In Situ Measurements of the Friction Force and Contact Voltage.
    Tsai AE; Komvopoulos K
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption Behavior of TEMPO-Based Organic Friction Modifiers during Sliding between Iron Oxide Surfaces: A Molecular Dynamics Study.
    Chen X; Yang J; Yasuda K; Koga N; Zhang H
    Langmuir; 2022 Mar; 38(10):3170-3179. PubMed ID: 35235329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Electric Potential and Chain Length on Tribological Performances of Ionic Liquids as Additives for Aqueous Systems and Molecular Dynamics Simulations.
    Dong R; Bao L; Yu Q; Wu Y; Ma Z; Zhang J; Cai M; Zhou F; Liu W
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39910-39919. PubMed ID: 32804469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compatibility between Various Ionic Liquids and an Organic Friction Modifier as Lubricant Additives.
    Li W; Kumara C; Meyer HM; Luo H; Qu J
    Langmuir; 2018 Sep; 34(36):10711-10720. PubMed ID: 30122048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayer Tribofilm: An Unique Structure to Strengthen Interface Tribological Behaviors.
    Wen P; Lei Y; Yan Q; Han Y; Fan M
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11524-11534. PubMed ID: 33635048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkyl-Ethylene Amines as Effective Organic Friction Modifiers for the Boundary Lubrication Regime.
    Hu W; Xu Y; Zeng X; Li J
    Langmuir; 2020 Jun; 36(24):6716-6727. PubMed ID: 32460502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-based tribofilms from lubricating oils.
    Erdemir A; Ramirez G; Eryilmaz OL; Narayanan B; Liao Y; Kamath G; Sankaranarayanan SK
    Nature; 2016 Aug; 536(7614):67-71. PubMed ID: 27488799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.
    Blum MM; Ovaert TC
    J Mech Behav Biomed Mater; 2012 Oct; 14():248-58. PubMed ID: 22947923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into tribofilm formation on Ti-6V-4Al in a bioactive environment: Correlation between surface modification and micro-mechanical properties.
    Qi J; Guan D; Nutter J; Wang B; Rainforth WM
    Acta Biomater; 2022 Mar; 141():466-480. PubMed ID: 35063707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tribological Performance of Nanocomposite Carbon Lubricant Additive.
    Xue C; Wang S; Wen D; Wang G; Wang Y
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano Serpentine Powders as Lubricant Additive: Tribological Behaviors and Self-Repairing Performance on Worn Surface.
    Wang B; Zhong Z; Qiu H; Chen D; Li W; Li S; Tu X
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32397564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.