These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38571612)

  • 1. Development of quantitative structure activity relationships (QSARs) for predicting the aggregation of TiO
    Lee J
    Heliyon; 2024 Apr; 10(7):e27966. PubMed ID: 38571612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure activity relationships (QSARs) and machine learning models for abiotic reduction of organic compounds by an aqueous Fe(II) complex.
    Gao Y; Zhong S; Torralba-Sanchez TL; Tratnyek PG; Weber EJ; Chen Y; Zhang H
    Water Res; 2021 Mar; 192():116843. PubMed ID: 33494041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.
    Lee J; Bartelt-Hunt SL; Li Y; Gilrein EJ
    Chemosphere; 2016 Jul; 154():187-193. PubMed ID: 27045636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing random forest based QSAR models for predicting the mixture toxicity of TiO
    Trinh TX; Seo M; Yoon TH; Kim J
    NanoImpact; 2022 Jan; 25():100383. PubMed ID: 35559889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationships for kinetic parameters of polycyclic aromatic hydrocarbon biotransformation.
    Dimitriou-Christidis P; Autenrieth RL; Abraham MH
    Environ Toxicol Chem; 2008 Jul; 27(7):1496-504. PubMed ID: 18366261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles.
    Lee J; Bartelt-Hunt SL; Li Y; Morton M
    Sci Total Environ; 2015 Apr; 511():195-202. PubMed ID: 25544338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Description of the electronic structure of organic chemicals using semiempirical and ab initio methods for development of toxicological QSARs.
    Netzeva TI; Aptula AO; Benfenati E; Cronin MT; Gini G; Lessigiarska I; Maran U; Vracko M; Schüürmann G
    J Chem Inf Model; 2005; 45(1):106-14. PubMed ID: 15667135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-activity relationships (QSARs) of N-terminus fragments of NK1 tachykinin antagonists: a comparison of classical QSARs and three-dimensional QSARs from similarity matrices.
    Horwell DC; Howson W; Higginbottom M; Naylor D; Ratcliffe GS; Williams S
    J Med Chem; 1995 Oct; 38(22):4454-62. PubMed ID: 7473572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative structure-activity relationships for chemical toxicity to environmental bacteria.
    Blum DJ; Speece RE
    Ecotoxicol Environ Saf; 1991 Oct; 22(2):198-224. PubMed ID: 1769352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting electrophoretic mobility of TiO
    Swirog M; Mikolajczyk A; Jagiello K; Jänes J; Tämm K; Puzyn T
    Sci Total Environ; 2022 Sep; 840():156572. PubMed ID: 35710003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles.
    Liu R; Rallo R; Bilal M; Cohen Y
    Comb Chem High Throughput Screen; 2015; 18(4):365-75. PubMed ID: 25747434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-activity relationships for the reaction kinetics of trace organic contaminants with one-electron oxidants.
    Liang X; Lei Y; Yang X
    Environ Sci Process Impacts; 2024 Jan; 26(1):192-208. PubMed ID: 38050900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships.
    Schultz TW; Cronin MT
    Environ Toxicol Chem; 2003 Mar; 22(3):599-607. PubMed ID: 12627648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of organic molecules on the aggregation of TiO
    Danielsson K; Gallego-Urrea JA; Hassellov M; Gustafsson S; Jonsson CM
    J Nanopart Res; 2017; 19(4):133. PubMed ID: 28424566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSARs to predict adsorption affinity of organic micropollutants for activated carbon and β-cyclodextrin polymer adsorbents.
    Ling Y; Klemes MJ; Steinschneider S; Dichtel WR; Helbling DE
    Water Res; 2019 May; 154():217-226. PubMed ID: 30798176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient predictions of cytotoxicity of TiO
    Banerjee A; Kar S; Pore S; Roy K
    Nanotoxicology; 2023 Feb; 17(1):78-93. PubMed ID: 36891579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish.
    Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F
    Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationships for the degradation reaction of 1-beta-O-acyl glucuronides. Part 3: Electronic and steric descriptors predicting the reactivity of aralkyl carboxylic acid 1-beta-O-acyl glucuronides.
    Baba A; Yoshioka T
    Chem Res Toxicol; 2009 Dec; 22(12):1998-2008. PubMed ID: 19902937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) Models.
    Bouarab-Chibane L; Forquet V; Lantéri P; Clément Y; Léonard-Akkari L; Oulahal N; Degraeve P; Bordes C
    Front Microbiol; 2019; 10():829. PubMed ID: 31057527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.