These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 3857223)
1. Identification of molybdoproteins in Clostridium pasteurianum. Hinton SM; Mortenson LE J Bacteriol; 1985 May; 162(2):477-84. PubMed ID: 3857223 [TBL] [Abstract][Full Text] [Related]
2. Regulation and order of involvement of molybdoproteins during synthesis of molybdoenzymes in Clostridium pasteurianum. Hinton SM; Mortenson LE J Bacteriol; 1985 May; 162(2):485-93. PubMed ID: 3857224 [TBL] [Abstract][Full Text] [Related]
4. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase. Hawkes TR; Bray RC Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882 [TBL] [Abstract][Full Text] [Related]
5. Identification of the molybdenum cofactor in chlorate-resistant mutants of Escherichia coli. Amy NK J Bacteriol; 1981 Oct; 148(1):274-82. PubMed ID: 7026535 [TBL] [Abstract][Full Text] [Related]
6. Comparative in-vivo and in-vitro 99Mo-time-differential-perturbed-angular-correlation studies on the nitrogenase MoFe protein and on other Mo species of different N2-fixing bacteria. Muller A; Suer W; Pohlmann C; Schneider K; Thies WG; Appel H Eur J Biochem; 1997 Jun; 246(2):311-9. PubMed ID: 9208919 [TBL] [Abstract][Full Text] [Related]
7. Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis. Johnson ME; Rajagopalan KV J Bacteriol; 1987 Jan; 169(1):117-25. PubMed ID: 2947896 [TBL] [Abstract][Full Text] [Related]
8. Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli. Hasona A; Ray RM; Shanmugam KT J Bacteriol; 1998 Mar; 180(6):1466-72. PubMed ID: 9515915 [TBL] [Abstract][Full Text] [Related]
9. Molybdenum cofactor biosynthesis in Neurospora crassa: biochemical characterization of pleiotropic molybdoenzyme mutants nit-7, nit-8, nit-9A, B and C. Heck IS; Ninnemann H Photochem Photobiol; 1995 Jan; 61(1):54-60. PubMed ID: 7899494 [TBL] [Abstract][Full Text] [Related]
10. The relationship of Mo, molybdopterin, and the cyanolyzable sulfur in the Mo cofactor. Wahl RC; Hageman RV; Rajagopalan KV Arch Biochem Biophys; 1984 Apr; 230(1):264-73. PubMed ID: 6231887 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic multiphasic gel electrophoresis of the molybdoproteins in extracts of Clostridium pasteurianum. Hinton SM; Mortenson LE Anal Biochem; 1985 Mar; 145(2):222-9. PubMed ID: 4014654 [TBL] [Abstract][Full Text] [Related]
12. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli. Sandu C; Brandsch R Arch Microbiol; 2002 Dec; 178(6):465-70. PubMed ID: 12420167 [TBL] [Abstract][Full Text] [Related]
13. Role of molybdenum in dinitrogen fixation by Clostridium pasteurianum. Cardenas J; Mortenson LE J Bacteriol; 1975 Sep; 123(3):978-84. PubMed ID: 1158853 [TBL] [Abstract][Full Text] [Related]
14. Activation of nit-1 nitrate reductase by W-formate dehydrogenase. Deaton JC; Solomon EI; Durfor CN; Wetherbee PJ; Burgess BK; Jacobs DB Biochem Biophys Res Commun; 1984 Jun; 121(3):1042-7. PubMed ID: 6234890 [TBL] [Abstract][Full Text] [Related]
15. The Chlamydomonas reinhardtii MoCo carrier protein is multimeric and stabilizes molybdopterin cofactor in a molybdate charged form. Witte CP; Igeño MI; Mendel R; Schwarz G; Fernández E FEBS Lett; 1998 Jul; 431(2):205-9. PubMed ID: 9708903 [TBL] [Abstract][Full Text] [Related]
16. Oxidative inactivation of the molybdenum-iron-protein component of nitrogenase from clostridium pasteurianum. Gomez-Moreno C; Ke B Mol Cell Biochem; 1979 Jul; 26(2):111-22. PubMed ID: 228173 [TBL] [Abstract][Full Text] [Related]
17. Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii. Gangeswaran R; Lowe DJ; Eady RR Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):335-42. PubMed ID: 8380991 [TBL] [Abstract][Full Text] [Related]
18. The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme--an aldehyde oxidoreductase. Kardinahl S; Schmidt CL; Hansen T; Anemüller S; Petersen A; Schäfer G Eur J Biochem; 1999 Mar; 260(2):540-8. PubMed ID: 10095793 [TBL] [Abstract][Full Text] [Related]
19. In vitro reconstitution of nitrate reductase activity of the Neurospora crassa mutant nit-1: specific incorporation of molybdopterin. Kramer S; Hageman RV; Rajagopalan KV Arch Biochem Biophys; 1984 Sep; 233(2):821-9. PubMed ID: 6237611 [TBL] [Abstract][Full Text] [Related]
20. Molybdenum cofactors from molybdoenzymes and in vitro reconstitution of nitrogenase and nitrate reductase. Pienkos PT; Shah VK; Brill WJ Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5468-71. PubMed ID: 146198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]