These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38572674)

  • 21. A Compact and Efficient Boost Converter in a 28 nm CMOS with 90 mV Self-Startup and Maximum Output Voltage Tracking ZCS for Thermoelectric Energy Harvesting.
    Ali M; Chandrarathna SC; Moon SY; Jana MS; Shafique A; Qraiqea H; Lee JW
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency.
    Jin L; Chen J; Zhang B; Deng W; Zhang L; Zhang H; Huang X; Zhu M; Yang W; Wang ZL
    ACS Nano; 2016 Aug; 10(8):7874-81. PubMed ID: 27391273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-Shell Photothermoelectric Textile Based on a PPy Photothermal Layer for Solar Thermal Energy Harvesting.
    Zhang X; Li TT; Ren HT; Peng HK; Shiu BC; Wang Y; Lou CW; Lin JH
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55072-55082. PubMed ID: 33252221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity.
    Kim SL; Choi K; Tazebay A; Yu C
    ACS Nano; 2014 Mar; 8(3):2377-86. PubMed ID: 24517397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting.
    Hu Y; Chen M; Qin C; Zhang J; Lu A
    Carbohydr Polym; 2022 Sep; 292():119650. PubMed ID: 35725205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible thermoelectric generator and energy management electronics powered by body heat.
    Yang S; Li Y; Deng L; Tian S; Yao Y; Yang F; Feng C; Dai J; Wang P; Gao M
    Microsyst Nanoeng; 2023; 9():106. PubMed ID: 37636323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Gyroscope Nanogenerator with Frequency Up-Conversion Effect for Fitness and Energy Harvesting.
    Gai Y; Bai Y; Cao Y; Wang E; Xue J; Qu X; Liu Z; Luo D; Li Z
    Small; 2022 Apr; 18(14):e2108091. PubMed ID: 35187811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.
    Park T; Na J; Kim B; Kim Y; Shin H; Kim E
    ACS Nano; 2015 Dec; 9(12):11830-9. PubMed ID: 26308669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enabling Highly Enhanced Solar Thermoelectric Generator Efficiency by a CuCrMnCoAlN-Based Spectrally Selective Absorber.
    Liu X; Zhao P; He CY; Wang WM; Liu BH; Lu ZW; Wang YF; Guo HX; Liu G; Gao XH
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36288261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure design and wireless transmission application of hybrid nanogenerators for swinging mechanical energy and solar energy harvesting.
    Shi H; Lu H; Liu X; Wang X; Wu Y; Zheng H
    Nanoscale; 2022 Aug; 14(30):10972-10979. PubMed ID: 35861171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Thermoelectric Energy Harvester Based on Microstructured Quasicrystalline Solar Absorber.
    Silva Oliveira V; Camboim MM; Protasio de Souza C; Silva Guedes de Lima BA; Baiocchi O; Kim HS
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33918230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible, High-Power Density, Wearable Thermoelectric Nanogenerator and Self-Powered Temperature Sensor.
    Feng R; Tang F; Zhang N; Wang X
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38616-38624. PubMed ID: 31556992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subcutaneous power supply by NIR-II light.
    Lyu S; He Y; Tao X; Yao Y; Huang X; Ma Y; Peng Z; Ding Y; Wang Y
    Nat Commun; 2022 Nov; 13(1):6596. PubMed ID: 36329024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential application of Aloe Vera-derived plant-based cell in powering wireless device for remote sensor activation.
    Chong PL; Singh AK; Kok SL
    PLoS One; 2019; 14(12):e0227153. PubMed ID: 31881078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental Evidence of the Viability of Thermoelectric Generators to Power Volcanic Monitoring Stations.
    Catalan L; Garacochea A; Casi A; Araiz M; Aranguren P; Astrain D
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal-to-Electrical Conversion Based on Salinity Gradient Driven by Evaporation.
    Hu L; Zheng H; Yang S; Liu X; Du YM; Li J; Wang H; Sun K
    Small; 2024 Jul; 20(28):e2311129. PubMed ID: 38319033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High Efficiency Breathable Thermoelectric Skin Using Multimode Radiative Cooling/Solar Heating Assisted Large Thermal Gradient.
    Jung Y; Jeong S; Ahn J; Lee J; Ko SH
    Small; 2024 Jan; 20(1):e2304338. PubMed ID: 37649174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developing Flexible Quinacridone-Derivatives-Based Photothermal Evaporaters for Solar Steam and Thermoelectric Power Generation.
    Shen M; Zhao X; Han L; Jin N; Liu S; Jia T; Chen Z; Zhao X
    Chemistry; 2022 Apr; 28(20):e202104137. PubMed ID: 35102622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator.
    Chang H; Yu ZR
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6811-6. PubMed ID: 22962827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and Testing of the Thermoelectric Thermal Energy Conversion Device in the Conditions of Existing Aluminum Production.
    Kondratiev VV; Sysoev IA; Kolosov AD; Galishnikova VV; Gladkikh VA; Karlina AI; Karlina YI
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36500021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.