These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38572944)
21. Noise-induced Hopf-bifurcation-type sequence and transition to chaos in the lorenz equations. Gao JB; Tung WW; Rao N Phys Rev Lett; 2002 Dec; 89(25):254101. PubMed ID: 12484887 [TBL] [Abstract][Full Text] [Related]
22. Clustering, chaos, and crisis in a bailout embedding map. Thyagu NN; Gupte N Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046218. PubMed ID: 17995093 [TBL] [Abstract][Full Text] [Related]
23. Bistable chaos without symmetry in generalized synchronization. Guan S; Lai CH; Wei GW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036209. PubMed ID: 15903548 [TBL] [Abstract][Full Text] [Related]
24. Strange attractor existence for non-local operators applied to four-dimensional chaotic systems with two equilibrium points. Doungmo Goufo EF Chaos; 2019 Feb; 29(2):023117. PubMed ID: 30823728 [TBL] [Abstract][Full Text] [Related]
25. Strange Attractors Generated by Multiple-Valued Static Memory Cell with Polynomial Approximation of Resonant Tunneling Diodes. Petrzela J Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265786 [TBL] [Abstract][Full Text] [Related]
26. Transition between multimode oscillations in a loaded hair bundle. Wu F; Wang R Chaos; 2019 Aug; 29(8):083135. PubMed ID: 31472489 [TBL] [Abstract][Full Text] [Related]
27. Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems. Mugnaine M; Batista AM; Caldas IL; Szezech JD; de Carvalho RE; Viana RL Chaos; 2021 Feb; 31(2):023125. PubMed ID: 33653060 [TBL] [Abstract][Full Text] [Related]
28. Simple approach to the creation of a strange nonchaotic attractor in any chaotic system. Shuai JW; Wong KW Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5338-43. PubMed ID: 11969493 [TBL] [Abstract][Full Text] [Related]
29. Interruption of torus doubling bifurcation and genesis of strange nonchaotic attractors in a quasiperiodically forced map: mechanisms and their characterizations. Venkatesan A; Lakshmanan M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026219. PubMed ID: 11308570 [TBL] [Abstract][Full Text] [Related]
30. Structure and evolution of strange attractors in non-elastic triangular billiards. Arroyo A; Markarian R; Sanders DP Chaos; 2012 Jun; 22(2):026107. PubMed ID: 22757566 [TBL] [Abstract][Full Text] [Related]
31. Bistability and hidden attractors in the paradigmatic Rössler'76 system. Malasoma JM; Malasoma N Chaos; 2020 Dec; 30(12):123144. PubMed ID: 33380068 [TBL] [Abstract][Full Text] [Related]
32. Multistability, noise, and attractor hopping: the crucial role of chaotic saddles. Kraut S; Feudel U Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):015207. PubMed ID: 12241417 [TBL] [Abstract][Full Text] [Related]
33. Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram. Dafilis MP; Frascoli F; Cadusch PJ; Liley DT Chaos; 2013 Jun; 23(2):023111. PubMed ID: 23822476 [TBL] [Abstract][Full Text] [Related]
34. A novel non-equilibrium memristor-based system with multi-wing attractors and multiple transient transitions. Gu S; Peng Q; Leng X; Du B Chaos; 2021 Mar; 31(3):033105. PubMed ID: 33810728 [TBL] [Abstract][Full Text] [Related]
35. Multistability in Chua's circuit with two stable node-foci. Bao BC; Li QD; Wang N; Xu Q Chaos; 2016 Apr; 26(4):043111. PubMed ID: 27131490 [TBL] [Abstract][Full Text] [Related]
36. Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation. Rempel EL; Chian AC Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016203. PubMed ID: 15697694 [TBL] [Abstract][Full Text] [Related]
37. Torus fractalization and intermittency. Kuznetsov SP Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066209. PubMed ID: 12188817 [TBL] [Abstract][Full Text] [Related]
38. Effect of noise on the neutral direction of chaotic attractor. Lai YC; Liu Z Chaos; 2004 Mar; 14(1):189-92. PubMed ID: 15003060 [TBL] [Abstract][Full Text] [Related]
39. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations. Li C; Wang E; Wang J J Chem Phys; 2012 May; 136(19):194108. PubMed ID: 22612081 [TBL] [Abstract][Full Text] [Related]