These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38573309)

  • 1. An All-Soluble Fe/Mn-Based Alkaline Redox Flow Battery System.
    Shen X; Kellamis C; Tam V; Sinclair N; Wainright J; Savinell R
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18686-18692. PubMed ID: 38573309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkaline all iron redox flow battery with a polyethylene/poly(styrene-
    Sreenath S; Sharma NK; Nagarale RK
    RSC Adv; 2020 Dec; 10(73):44824-44833. PubMed ID: 36381542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Stable and Energy-Dense Polysulfide/Permanganate Flow Battery.
    Ding M; Fu H; Lou X; He M; Chen B; Han Z; Chu S; Lu B; Zhou G; Jia C
    ACS Nano; 2023 Aug; 17(16):16252-16263. PubMed ID: 37523251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review.
    Fischer P; Mazúr P; Krakowiak J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Soluble Dimethoxymethyl Tetrathiafulvalene with Excellent Stability for Non-Aqueous Redox Flow Batteries.
    Chen D; Shen H; Chen D; Chen N; Meng Y
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31491-31501. PubMed ID: 37341213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Regulation of Solvation Shell and Oriented Deposition toward a Highly Reversible Fe Anode for All-Iron Flow Batteries.
    Song Y; Yan H; Hao H; Liu Z; Yan C; Tang A
    Small; 2022 Dec; 18(49):e2204356. PubMed ID: 36310140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery.
    Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric and Symmetric Redox Flow Batteries for Energy-Efficient, High-Recovery Water Desalination.
    Mohandass G; Chen W; Krishnan S; Kim T
    Environ Sci Technol; 2022 Apr; 56(7):4477-4488. PubMed ID: 35297617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Voltage Catholyte for High-Energy-Density Nonaqueous Redox Flow Battery.
    McGrath J; Gautam RK; Wang X; Jiang JJ
    Angew Chem Int Ed Engl; 2024 Sep; 63(37):e202407906. PubMed ID: 38842475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel-hydrogen batteries for large-scale energy storage.
    Chen W; Jin Y; Zhao J; Liu N; Cui Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11694-11699. PubMed ID: 30373834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte.
    Zhao Y; Ding Y; Song J; Li G; Dong G; Goodenough JB; Yu G
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):11036-40. PubMed ID: 25164770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Universal Additive Design Strategy to Modulate Solvation Structure and Hydrogen Bond Network toward Highly Reversible Fe Anode for Low-Temperature All-Iron Flow Batteries.
    Yang J; Yan H; Zhang QA; Song Y; Li Y; Tang A
    Small; 2024 Feb; 20(8):e2307354. PubMed ID: 37821406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microemulsions: Breakthrough Electrolytes for Redox Flow Batteries.
    Barth BA; Imel A; Nelms KM; Goenaga GA; Zawodzinski T
    Front Chem; 2022; 10():831200. PubMed ID: 35308789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.
    Hu B; DeBruler C; Rhodes Z; Liu TL
    J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of adding Bi
    Kabtamu DM; Lin GY; Chang YC; Chen HY; Huang HC; Hsu NY; Chou YS; Wei HJ; Wang CH
    RSC Adv; 2018 Feb; 8(16):8537-8543. PubMed ID: 35539857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A higher voltage Fe(ii) bipyridine complex for non-aqueous redox flow batteries.
    Cammack CX; Pratt HD; Small LJ; Anderson TM
    Dalton Trans; 2021 Jan; 50(3):858-868. PubMed ID: 33346757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Universal Coulombic Efficiency Compensation Strategy for Zinc-Based Flow Batteries.
    Huang S; Li M; Song Y; Xi S; Wu C; Ang ZWJ; Wang Q
    Adv Mater; 2024 Aug; 36(33):e2406366. PubMed ID: 38870394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Double-ligand Chelating Strategy to Iron Complex Anolytes with Ultrahigh Cyclability for Aqueous Iron Flow Batteries.
    Wang S; Ma L; Niu S; Sun S; Liu Y; Cheng Y
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202316593. PubMed ID: 38185795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Sodium-Ion Battery Separator with Reversible Voltage Response Based on Water-Soluble Cellulose Derivatives.
    Casas X; Niederberger M; Lizundia E
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29264-29274. PubMed ID: 32510197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.