These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38573318)

  • 21. Dependence of non-equilibrium Casimir forces on material optical properties toward chaotic motion during device actuation.
    Tajik F; Babamahdi Z; Sedighi M; Masoudi AA; Palasantzas G
    Chaos; 2019 Sep; 29(9):093126. PubMed ID: 31575132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlinear actuation of micromechanical Casimir oscillators with topological insulator materials toward chaotic motion: Sensitivity on magnetization and dielectric properties.
    Tajik F; Allameh N; Masoudi AA; Palasantzas G
    Chaos; 2022 Sep; 32(9):093149. PubMed ID: 36182392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colloidal particle deposition on microchannel walls, for attractive and repulsive surface potentials.
    Porto Santos T; Cunha RL; Tabeling P; Cejas CM
    Phys Chem Chem Phys; 2020 Aug; 22(30):17236-17246. PubMed ID: 32685946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-consistent dielectric functions of materials: Toward accurate computation of Casimir-van der Waals forces.
    Moazzami Gudarzi M; Aboutalebi SH
    Sci Adv; 2021 May; 7(22):. PubMed ID: 34039608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning effective interactions close to the critical point in colloidal suspensions.
    Gnan N; Zaccarelli E; Sciortino F
    J Chem Phys; 2012 Aug; 137(8):084903. PubMed ID: 22938261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling dispersion forces between small particles with artificially created random light fields.
    Brügger G; Froufe-Pérez LS; Scheffold F; José Sáenz J
    Nat Commun; 2015 Jun; 6():7460. PubMed ID: 26096622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical Casimir effect in classical binary liquid mixtures.
    Gambassi A; Maciołek A; Hertlein C; Nellen U; Helden L; Bechinger C; Dietrich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061143. PubMed ID: 20365154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by poisson statistical analysis.
    Abu-Lail NI; Camesano TA
    Langmuir; 2006 Aug; 22(17):7296-301. PubMed ID: 16893229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring forces between individual colloidal particles with the atomic force microscope.
    Sinha P; Popa I; Finessi M; Ruiz-Cabello FJ; Szilágyi I; Maroni P; Borkovec M
    Chimia (Aarau); 2012; 66(4):214-7. PubMed ID: 22613153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interparticle Forces of a Native and Encapsulated Metal-Organic Framework and Their Effects on Colloidal Dispersion.
    Butler EL; Reid B; Luckham PF; Guldin S; Livingston AG; Petit C
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45898-45906. PubMed ID: 34533300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical Casimir effect for colloids close to chemically patterned substrates.
    Tröndle M; Kondrat S; Gambassi A; Harnau L; Dietrich S
    J Chem Phys; 2010 Aug; 133(7):074702. PubMed ID: 20726658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.
    Wang J; Nguyen AV
    Adv Colloid Interface Sci; 2017 Dec; 250():54-63. PubMed ID: 29100682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluctuation-induced dispersion forces on thin DNA films.
    Ge L; Shi X; Li B; Gong K
    Phys Rev E; 2023 Jun; 107(6-1):064402. PubMed ID: 37464699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Casimir-like forces at the percolation transition.
    Gnan N; Zaccarelli E; Sciortino F
    Nat Commun; 2014; 5():3267. PubMed ID: 24513667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correction: Controlling the dynamics of colloidal particles by critical Casimir forces.
    Magazzù A; Callegari A; Staforelli JP; Gambassi A; Dietrich S; Volpe G
    Soft Matter; 2020 Jun; 16(22):5334. PubMed ID: 32458961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How to modify the van der Waals and Casimir forces without change of the dielectric permittivity.
    Klimchitskaya GL; Mohideen U; Mostepanenko VM
    J Phys Condens Matter; 2012 Oct; 24(42):424202. PubMed ID: 23032183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticles at fluid interfaces.
    Bresme F; Oettel M
    J Phys Condens Matter; 2007 Oct; 19(41):413101. PubMed ID: 28192311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rigorous analysis of Casimir and van der Waals forces on a silicon nano-optomechanical device actuated by optical forces.
    Rodrigues JR; Gusso A; Rosa FSS; Almeida VR
    Nanoscale; 2018 Feb; 10(8):3945-3952. PubMed ID: 29423463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Switching Colloidal Superstructures by Critical Casimir Forces.
    Nguyen TA; Newton A; Veen SJ; Kraft DJ; Bolhuis PG; Schall P
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28692773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Van der Waals interactions: evaluations by use of a statistical mechanical method.
    Høye JS
    J Chem Phys; 2011 Oct; 135(13):134102. PubMed ID: 21992277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.