BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38573347)

  • 1. Phosphatidylserine externalization as immune checkpoint in cancer.
    Kur IM; Weigert A
    Pflugers Arch; 2024 Apr; ():. PubMed ID: 38573347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting phosphatidylserine for Cancer therapy: prospects and challenges.
    Chang W; Fa H; Xiao D; Wang J
    Theranostics; 2020; 10(20):9214-9229. PubMed ID: 32802188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological Function and Immunotherapy Utilizing Phosphatidylserine-based Nanoparticles.
    Glassman FY; Dingman R; Yau HC; Balu-Iyer SV
    Immunol Invest; 2020 Oct; 49(7):858-874. PubMed ID: 32204629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid antioxidant, etoposide, inhibits phosphatidylserine externalization and macrophage clearance of apoptotic cells by preventing phosphatidylserine oxidation.
    Tyurina YY; Serinkan FB; Tyurin VA; Kini V; Yalowich JC; Schroit AJ; Fadeel B; Kagan VE
    J Biol Chem; 2004 Feb; 279(7):6056-64. PubMed ID: 14630936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blocking antibody-mediated phosphatidylserine enhances cancer immunotherapy.
    Zhang J; Dai Z; Yan C; Wang D; Tang D
    J Cancer Res Clin Oncol; 2021 Dec; 147(12):3639-3651. PubMed ID: 34499223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibody targeting of phosphatidylserine for the detection and immunotherapy of cancer.
    Belzile O; Huang X; Gong J; Carlson J; Schroit AJ; Brekken RA; Freimark BD
    Immunotargets Ther; 2018; 7():1-14. PubMed ID: 29417044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylserine-Exposing Annexin A1-Positive Extracellular Vesicles: Potential Cancer Biomarkers.
    Perez GI; Bernard MP; Vocelle D; Zarea AA; Saleh NA; Gagea MA; Schneider D; Bauzon M; Hermiston T; Kanada M
    Vaccines (Basel); 2023 Mar; 11(3):. PubMed ID: 36992223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune Checkpoint Inhibitors and Prostate Cancer: A New Frontier?
    Modena A; Ciccarese C; Iacovelli R; Brunelli M; Montironi R; Fiorentino M; Tortora G; Massari F
    Oncol Rev; 2016 Apr; 10(1):293. PubMed ID: 27471580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy.
    Dai Z; Wang Q; Tang J; Wu M; Li H; Yang Y; Zhen X; Yu C
    Biomaterials; 2022 Jan; 280():121261. PubMed ID: 34815099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: recent advances and emerging concepts.
    Khan NA; Asim M; Biswas KH; Alansari AN; Saman H; Sarwar MZ; Osmonaliev K; Uddin S
    J Exp Clin Cancer Res; 2023 Aug; 42(1):221. PubMed ID: 37641132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy.
    Xu S; Wang C; Yang L; Wu J; Li M; Xiao P; Xu Z; Xu Y; Wang K
    Front Immunol; 2023; 14():1199631. PubMed ID: 37313405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engagement of phospholipid scramblase 1 in activated cells: implication for phosphatidylserine externalization and exocytosis.
    Smrz D; Lebduska P; Dráberová L; Korb J; Dráber P
    J Biol Chem; 2008 Apr; 283(16):10904-18. PubMed ID: 18281686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy.
    Dayoub AS; Brekken RA
    Cell Commun Signal; 2020 Feb; 18(1):29. PubMed ID: 32087708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverting Immune Suppression to Enhance Cancer Immunotherapy.
    Guerrouahen BS; Maccalli C; Cugno C; Rutella S; Akporiaye ET
    Front Oncol; 2019; 9():1554. PubMed ID: 32039024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials.
    Yadav D; Kwak M; Chauhan PS; Puranik N; Lee PCW; Jin JO
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):909-922. PubMed ID: 35181474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunotherapy in treatment of metastatic prostate cancer: An approach to circumvent immunosuppressive tumor microenvironment.
    Sun BL
    Prostate; 2021 Nov; 81(15):1125-1134. PubMed ID: 34435699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules.
    Zhou G; Sprengers D; Mancham S; Erkens R; Boor PPC; van Beek AA; Doukas M; Noordam L; Campos Carrascosa L; de Ruiter V; van Leeuwen RWF; Polak WG; de Jonge J; Groot Koerkamp B; van Rosmalen B; van Gulik TM; Verheij J; IJzermans JNM; Bruno MJ; Kwekkeboom J
    J Hepatol; 2019 Oct; 71(4):753-762. PubMed ID: 31195061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer.
    Lazăr DC; Avram MF; Romoșan I; Cornianu M; Tăban S; Goldiș A
    World J Gastroenterol; 2018 Aug; 24(32):3583-3616. PubMed ID: 30166856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.