BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38573347)

  • 21. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution.
    Hankins HM; Baldridge RD; Xu P; Graham TR
    Traffic; 2015 Jan; 16(1):35-47. PubMed ID: 25284293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phospholipids: key players in apoptosis and immune regulation.
    Chaurio RA; Janko C; Muñoz LE; Frey B; Herrmann M; Gaipl US
    Molecules; 2009 Nov; 14(12):4892-914. PubMed ID: 20032867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue biomarkers of immune checkpoint inhibitor therapy.
    Davoudi F; Moradi A; Sadeghirad H; Kulasinghe A
    Immunol Cell Biol; 2024 Mar; 102(3):179-193. PubMed ID: 38228572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer.
    Fathi M; Pustokhina I; Kuznetsov SV; Khayrullin M; Hojjat-Farsangi M; Karpisheh V; Jalili A; Jadidi-Niaragh F
    IUBMB Life; 2021 May; 73(5):726-738. PubMed ID: 33686787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the Glioblastoma Microenvironment.
    Miyazaki T; Ishikawa E; Sugii N; Matsuda M
    Cancers (Basel); 2020 Jul; 12(7):. PubMed ID: 32707672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immune checkpoint molecules in neuroblastoma: A clinical perspective.
    Pathania AS; Prathipati P; Murakonda SP; Murakonda AB; Srivastava A; Avadhesh ; Byrareddy SN; Coulter DW; Gupta SC; Challagundla KB
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):247-258. PubMed ID: 35787940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting the Tumor Microenvironment for Improving Therapeutic Effectiveness in Cancer Immunotherapy: Focusing on Immune Checkpoint Inhibitors and Combination Therapies.
    Chyuan IT; Chu CL; Hsu PN
    Cancers (Basel); 2021 Mar; 13(6):. PubMed ID: 33801815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers.
    Gray MJ; Gong J; Hatch MM; Nguyen V; Hughes CC; Hutchins JT; Freimark BD
    Breast Cancer Res; 2016 May; 18(1):50. PubMed ID: 27169467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness.
    Barnestein R; Galland L; Kalfeist L; Ghiringhelli F; Ladoire S; Limagne E
    Oncoimmunology; 2022; 11(1):2120676. PubMed ID: 36117524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological roles of transverse lipid asymmetry of animal membranes.
    Clarke RJ; Hossain KR; Cao K
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183382. PubMed ID: 32511979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Checkpoint molecules on infiltrating immune cells in colorectal tumor microenvironment.
    Talaat IM; Elemam NM; Zaher S; Saber-Ayad M
    Front Med (Lausanne); 2022; 9():955599. PubMed ID: 36072957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Depletion of Bcl-2 by an antisense oligonucleotide induces apoptosis accompanied by oxidation and externalization of phosphatidylserine in NCI-H226 lung carcinoma cells.
    Koty PP; Tyurina YY; Tyurin VA; Li SX; Kagan VE
    Mol Cell Biochem; 2002; 234-235(1-2):125-33. PubMed ID: 12162425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review.
    Eskandari-Malayeri F; Rezaei M
    Front Immunol; 2022; 13():996145. PubMed ID: 36275750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer.
    Xu P; Wasielewski LJ; Yang JC; Cai D; Evans CP; Murphy WJ; Liu C
    Biomedicines; 2022 Jul; 10(8):. PubMed ID: 35892678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunological and biological dissection of normal and tumoral salivary glands.
    Haghshenas MR; Ghaderi H; Daneste H; Ghaderi A
    Int Rev Immunol; 2023; 42(2):139-155. PubMed ID: 34378486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy.
    Xie G; Cheng T; Lin J; Zhang L; Zheng J; Liu Y; Xie G; Wang B; Yuan Y
    J Immunother Cancer; 2018 Sep; 6(1):88. PubMed ID: 30208943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resistance to Checkpoint Inhibition in Cancer Immunotherapy.
    Barrueto L; Caminero F; Cash L; Makris C; Lamichhane P; Deshmukh RR
    Transl Oncol; 2020 Mar; 13(3):100738. PubMed ID: 32114384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Checkpoint Inhibitors for the Treatment of Hodgkin Lymphoma.
    Bennani-Baiti N; Thanarajasingam G; Ansell S
    Expert Rev Clin Immunol; 2016 Jun; 12(6):673-9. PubMed ID: 26818843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review).
    Yang S; Zou R; Dai Y; Hu Y; Li F; Hu H
    Int J Oncol; 2023 Dec; 63(6):. PubMed ID: 37888583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Chlamydia pneumoniae adhesin induces phosphatidylserine exposure on host cells.
    Galle JN; Fechtner T; Eierhoff T; Römer W; Hegemann JH
    Nat Commun; 2019 Oct; 10(1):4644. PubMed ID: 31604911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.