These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38573769)

  • 1. Cost-Effective Rechargeable Magnesium Battery Based on a Fluorinated Alkoxyaluminate Electrolyte and a Carbonyl Polymer Cathode.
    Hu Z; Huang L; Gan X; Han Y; Chu J; Song Z
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19014-19025. PubMed ID: 38573769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzoquinone-Pyrrole Polymers as Cost-Effective Cathodes toward Practical Organic Batteries.
    Chu J; Li G; Wang Y; Zhang X; Yang Z; Han Y; Cai T; Song Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25566-25575. PubMed ID: 35611969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Practical Applications of the Magnesium Fluorinated Alkoxyaluminate Electrolyte in Mg Battery Cells.
    Pavčnik T; Lozinšek M; Pirnat K; Vizintin A; Mandai T; Aurbach D; Dominko R; Bitenc J
    ACS Appl Mater Interfaces; 2022 Jun; 14(23):26766-74. PubMed ID: 35642900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries.
    Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X
    Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel calcium fluorinated alkoxyaluminate salt as a next step towards Ca metal anode rechargeable batteries.
    Pavčnik T; Forero-Saboya JD; Ponrouch A; Robba A; Dominko R; Bitenc J
    J Mater Chem A Mater; 2023 Jul; 11(27):14738-14747. PubMed ID: 37441279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Pyrite Iron Disulfide Cathode with a Copper Current Collector for High-Energy Reversible Magnesium-Ion Storage.
    Shen Y; Zhang Q; Wang Y; Gu L; Zhao X; Shen X
    Adv Mater; 2021 Oct; 33(41):e2103881. PubMed ID: 34436798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance.
    Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD
    Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative Cationic and Anionic Redox Reactions in Ultrathin Polyvalent Metal Selenide Nanoribbons for High-Performance Electrochemical Magnesium-Ion Storage.
    Xue X; Song X; Yan W; Jiang M; Li F; Zhang XL; Tie Z; Jin Z
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48734-48742. PubMed ID: 36273323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid-Solvent Electrolytes for Enhanced Potassium-Oxygen Battery Performance.
    Qiu C; Jiang J; Zhao X; Chen S; Ren X; Wu Y
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55719-55726. PubMed ID: 36475591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorinated Carbons as Rechargeable Li-Ion Battery Cathodes in the Voltage Window of 0.5-4.8 V.
    Chen P; Jiang C; Jiang J; Zou J; Ran Q; Wang X; Niu X; Wang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30576-30582. PubMed ID: 34165960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Promising High-Voltage Cathode Material Based on Mesoporous Na
    Zeng J; Yang Y; Lai S; Huang J; Zhang Y; Wang J; Zhao J
    Chemistry; 2017 Nov; 23(66):16898-16905. PubMed ID: 28960575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Mg
    Ma Y; Shuai K; Zhou L; Wang J; Wang Q
    Dalton Trans; 2020 Nov; 49(43):15397-15403. PubMed ID: 33140799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-Assisted Synthesis of CuS Hierarchical Nanosheets as the Cathode Material for High-Capacity Rechargeable Magnesium Batteries.
    Wang Z; Rafai S; Qiao C; Jia J; Zhu Y; Ma X; Cao C
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7046-7054. PubMed ID: 30667214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile and Economic Synthesis of Robust Non-Nucleophilic Electrolyte for High-Performance Rechargeable Magnesium Batteries.
    Huang X; Wen J; Lei J; Huang G; Pan F; Li L
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):8906-8915. PubMed ID: 35133809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Carbonyl and Azo-Based Polymer Cathode for Low-Temperature Na-Ion Batteries.
    Kim EY; Mohammadiroudbari M; Chen F; Yang Z; Luo C
    ACS Nano; 2024 Feb; 18(5):4159-4169. PubMed ID: 38264981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the Structure and Electrochemical Performance of Poly(
    Zhang X; Li G; Wang J; Chu J; Wang F; Hu Z; Song Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27968-27978. PubMed ID: 35675710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid MgCl
    Yang L; Yang C; Chen Y; Pu Z; Zhang Z; Jie Y; Zheng X; Xiao Y; Jiao S; Li Q; Xu D
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30712-30721. PubMed ID: 34156809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible Magnesium Metal Anode Enabled by Cooperative Solvation/Surface Engineering in Carbonate Electrolytes.
    Wang C; Huang Y; Lu Y; Pan H; Xu BB; Sun W; Yan M; Jiang Y
    Nanomicro Lett; 2021 Sep; 13(1):195. PubMed ID: 34523042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a Chloride-Free Magnesium Battery Electrolyte to Form a Robust Anode-Electrolyte Nanointerface.
    Horia R; Nguyen DT; Eng AYS; Seh ZW
    Nano Lett; 2021 Oct; 21(19):8220-8228. PubMed ID: 34519512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.