These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38573909)

  • 21. Cobalt-Containing Nanoporous Nitrogen-Doped Carbon Nanocuboids from Zeolite Imidazole Frameworks for Supercapacitors.
    Song Y; Zhang M; Liu T; Li T; Guo D; Liu XX
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binder-Free MOF-Based and MOF-Derived Nanoarrays for Flexible Electrochemical Energy Storage: Progress and Perspectives.
    Cai D; Yang Z; Tong R; Huang H; Zhang C; Xia Y
    Small; 2024 Mar; 20(12):e2305778. PubMed ID: 37948356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Synthesis of MOF-74 Family for High Areal Energy Density of Aqueous Nickel-Zinc Batteries.
    Chen T; Wang F; Cao S; Bai Y; Zheng S; Li W; Zhang S; Hu SX; Pang H
    Adv Mater; 2022 Jul; 34(30):e2201779. PubMed ID: 35593656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.
    Patil U; Lee SC; Kulkarni S; Sohn JS; Nam MS; Han S; Jun SC
    Nanoscale; 2015 Apr; 7(16):6999-7021. PubMed ID: 25807279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg.
    Zhai T; Lu X; Wang H; Wang G; Mathis T; Liu T; Li C; Tong Y; Li Y
    Nano Lett; 2015 May; 15(5):3189-94. PubMed ID: 25830495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vertical Graphene Arrays as Electrodes for Ultra-High Energy Density AC Line-Filtering Capacitors.
    Xu S; Wen Y; Chen Z; Ji N; Zou Z; Wu M; Qu L; Zhang J
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24505-24509. PubMed ID: 34533871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks.
    Kim HC; Huh S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors.
    Wang J; Zhong Q; Zeng Y; Cheng D; Xiong Y; Bu Y
    J Colloid Interface Sci; 2019 Nov; 555():42-52. PubMed ID: 31376767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple route to functionalized porous carbon foams from carbon nanodots for metal-free pseudocapacitors.
    Wang C; Sung K; Zhu JZJ; Qu S; Bao J; Chang X; Katsuyama Y; Yang Z; Zhang C; Huang A; Kroes BC; El-Kady MF; Kaner RB
    Mater Horiz; 2024 Feb; 11(3):688-699. PubMed ID: 37990914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-organic framework based electrode materials for lithium-ion batteries: a review.
    Mehek R; Iqbal N; Noor T; Amjad MZB; Ali G; Vignarooban K; Khan MA
    RSC Adv; 2021 Sep; 11(47):29247-29266. PubMed ID: 35479575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced electrochemical activities of morphologically tuned MnFe
    Rajalakshmi R; Remya KP; Viswanathan C; Ponpandian N
    Nanoscale Adv; 2021 May; 3(10):2887-2901. PubMed ID: 36134187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage.
    Bi H; Lin T; Xu F; Tang Y; Liu Z; Huang F
    Nano Lett; 2016 Jan; 16(1):349-54. PubMed ID: 26641709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors.
    Chen H; Wang MQ; Yu Y; Liu H; Lu SY; Bao SJ; Xu M
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35040-35047. PubMed ID: 28920672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2D Conjugated Metal-Organic Frameworks Embedded with Iodine for High-Performance Ammonium-Ion Hybrid Supercapacitors.
    Gao M; Wang Z; Liu Z; Huang Y; Wang F; Wang M; Yang S; Li J; Liu J; Qi H; Zhang P; Lu X; Feng X
    Adv Mater; 2023 Oct; 35(41):e2305575. PubMed ID: 37608530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of Vertical-Standing Co-MOF Nanoarrays with 2D Parallelogram-like Morphology for Aqueous Asymmetric Electrochemical Capacitors.
    Li L; Mi H; Jin Y; Ren D; Zhou K; Zhang Q; Liu J; Wang H
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. When Conductive MOFs Meet MnO
    Duan H; Zhao Z; Lu J; Hu W; Zhang Y; Li S; Zhang M; Zhu R; Pang H
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33083-33090. PubMed ID: 34235934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From 2D to 3D: Postsynthetic Pillar Insertion in Electrically Conductive MOF.
    Choi JY; Flood J; Stodolka M; Pham HTB; Park J
    ACS Nano; 2022 Feb; 16(2):3145-3151. PubMed ID: 35119816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. M-Ni-Co MOF (M=Zn, Fe, Mn) for high-performance supercapacitors by adjusting its morphology.
    Yan Y; Huang M; Wang Y; He D; He J
    Heliyon; 2024 Mar; 10(5):e25586. PubMed ID: 38439860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum Capacitance through Molecular Infiltration of 7,7,8,8-Tetracyanoquinodimethane in Metal-Organic Framework/Covalent Organic Framework Hybrids.
    Peng H; Huang S; Tranca D; Richard F; Baaziz W; Zhuang X; Samorì P; Ciesielski A
    ACS Nano; 2021 Nov; 15(11):18580-18589. PubMed ID: 34766761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors.
    Tian D; Ao Y; Li W; Xu J; Wang C
    J Colloid Interface Sci; 2021 Dec; 603():199-209. PubMed ID: 34186398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.