These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38573924)

  • 21. Controlling polyHIPE Surface Properties by Tuning the Hydrophobicity of MOF Particles Stabilizing a Pickering Emulsion.
    Lorignon F; Gossard A; Medjouel S; Carboni M; Meyer D
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30707-30716. PubMed ID: 37318840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of a Fluorocarbon Polymerizable Surfactant and Its Application in Emulsion Polymerization of Fluorine-Containing Acrylate.
    Zhao M; Yu Y; Han Z; Li H
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High internal phase emulsions: catastrophic phase inversion, stability, and triggered destabilization.
    Dunstan TS; Fletcher PD; Mashinchi S
    Langmuir; 2012 Jan; 28(1):339-49. PubMed ID: 22128917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of High Internal Phase Emulsion with a Miniature Twin Screw Extruder.
    Zhou C; Qiao M; Zhang X; Zhu Y; Zhang S; Chen J
    ACS Omega; 2019 Jun; 4(6):9957-9963. PubMed ID: 31460088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of polysaccharide mixtures on the formation, stability and EGCG loading of water-in-oil high internal phase emulsions.
    Cheng C; Gao H; McClements DJ; Zeng H; Ma L; Zou L; Miao J; Wu X; Tan J; Liang R; Liu W
    Food Chem; 2022 Mar; 372():131225. PubMed ID: 34614463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution.
    Krafft MP; Riess JG
    Biochimie; 1998; 80(5-6):489-514. PubMed ID: 9782389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rheological investigation of oil-in-water Pickering emulsions stabilized by cellulose nanocrystals.
    Miao C; Mirvakili MN; Hamad WY
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2820-2829. PubMed ID: 34802766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilization of high internal phase Pickering emulsions with millimeter-scale droplets using silica particles.
    Kim D; Lee H; Yoon H; Oh D; Kim K
    Soft Matter; 2023 May; 19(21):3841-3848. PubMed ID: 37194380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inverse Poly-High Internal Phase Emulsions Poly(HIPEs) Materials from Natural and Biocompatible Polysaccharides.
    Tripodo G; Calleri E; Franco CD; Torre ML; Memo M; Mandracchia D
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33276681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation and stability of W/O-high internal phase emulsions (HIPEs) and derived O/W emulsions stabilized by PGPR and lecithin.
    Okuro PK; Gomes A; Costa ALR; Adame MA; Cunha RL
    Food Res Int; 2019 Aug; 122():252-262. PubMed ID: 31229079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-Compatible Ca-BDC/Polymer Monolithic Composites Templated from Bio-Active Ca-BDC Co-Stabilized CO
    Yang X; Hao Y; Cao L
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32316501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic studies of Pickering emulsions stabilized by uniform-sized PLGA particles: preparation and stabilization mechanism.
    Qi F; Wu J; Sun G; Nan F; Ngai T; Ma G
    J Mater Chem B; 2014 Nov; 2(43):7605-7611. PubMed ID: 32261898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Internal Phase Emulsions Synergistically Stabilized by Sodium Carboxymethyl Cellulose and Palm Kernel Oil Ethoxylates as an Essential Oil Delivery System.
    Chen Q; Tai X; Li J; Li C; Guo L
    J Agric Food Chem; 2021 Apr; 69(14):4191-4203. PubMed ID: 33787238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amphiphilic nanosheet self-assembly at the water/oil interface: computer simulations.
    Xiang W; Zhao S; Song X; Fang S; Wang F; Zhong C; Luo Z
    Phys Chem Chem Phys; 2017 Mar; 19(11):7576-7586. PubMed ID: 28252120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thiol-Ene Cross-linking of Poly(ethylene glycol) within High Internal Phase Emulsions: Degradable Hydrophilic PolyHIPEs for Controlled Drug Release.
    Hobiger V; Zahoranova A; Baudis S; Liska R; Krajnc P
    Macromolecules; 2021 Nov; 54(22):10370-10380. PubMed ID: 34840351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. W/O high internal phase emulsions (HIPEs) stabilized by a piperazinyl based emulsifier.
    Jiang F; Gao D; Feng X; Pan J; Pu W
    Soft Matter; 2021 Nov; 17(43):9859-9865. PubMed ID: 34723315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comparison of Gelling Agents for Stable, Surfactant-Free Oil-in-Water Emulsions.
    Lee JY; Lee SH; Hwangbo SA; Lee TG
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Macroporous Polymers via Water-in-Water Emulsion-Templating Technique.
    Zhou Y; Zhu M; Sun Y; Zhu Y; Zhang S
    ACS Macro Lett; 2023 Mar; 12(3):302-307. PubMed ID: 36780492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pH-Responsive Pickering high internal phase emulsions stabilized by Waterborne polyurethane.
    Wu J; Guan X; Wang C; Ngai T; Lin W
    J Colloid Interface Sci; 2022 Mar; 610():994-1004. PubMed ID: 34865740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.