These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38574114)

  • 1. DBDNMF: A Dual Branch Deep Neural Matrix Factorization method for drug response prediction.
    Liu H; Wang F; Yu J; Pan Y; Gong C; Zhang L; Zhang L
    PLoS Comput Biol; 2024 Apr; 20(4):e1012012. PubMed ID: 38574114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization.
    Ren S; Tao Y; Yu K; Xue Y; Schwartz R; Lu X
    Pac Symp Biocomput; 2022; 27():278-289. PubMed ID: 34890156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How much can deep learning improve prediction of the responses to drugs in cancer cell lines?
    Chen Y; Zhang L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34529029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving drug response prediction based on two-space graph convolution.
    Peng W; Chen T; Liu H; Dai W; Yu N; Lan W
    Comput Biol Med; 2023 May; 158():106859. PubMed ID: 37023539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Drug Response Based on Multi-Omics Fusion and Graph Convolution.
    Peng W; Chen T; Dai W
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):1384-1393. PubMed ID: 34347616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix Factorization.
    Guan NN; Zhao Y; Wang CC; Li JQ; Chen X; Piao X
    Mol Ther Nucleic Acids; 2019 Sep; 17():164-174. PubMed ID: 31265947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization.
    Emdadi A; Eslahchi C
    Front Genet; 2020; 11():75. PubMed ID: 32174963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive anticancer drug response prediction based on a simple cell line-drug complex network model.
    Wei D; Liu C; Zheng X; Li Y
    BMC Bioinformatics; 2019 Jan; 20(1):44. PubMed ID: 30670007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix factorization with denoising autoencoders for prediction of drug-target interactions.
    Sajadi SZ; Zare Chahooki MA; Tavakol M; Gharaghani S
    Mol Divers; 2023 Jun; 27(3):1333-1343. PubMed ID: 35871213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of miRNA-disease associations by neural network-based deep matrix factorization.
    Qu Q; Chen X; Ning B; Zhang X; Nie H; Zeng L; Chen H; Fu X
    Methods; 2023 Apr; 212():1-9. PubMed ID: 36813017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix factorization with neural network for predicting circRNA-RBP interactions.
    Wang Z; Lei X
    BMC Bioinformatics; 2020 Jun; 21(1):229. PubMed ID: 32503474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explainable drug sensitivity prediction through cancer pathway enrichment.
    Tang YC; Gottlieb A
    Sci Rep; 2021 Feb; 11(1):3128. PubMed ID: 33542382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning matrix factorization with scalable distance metric and regularizer.
    Wang S; Zhang Y; Lin X; Su L; Xiao G; Zhu W; Shi Y
    Neural Netw; 2023 Apr; 161():254-266. PubMed ID: 36774864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.