BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38574114)

  • 21. Drug response prediction using graph representation learning and Laplacian feature selection.
    Xie M; Lei X; Zhong J; Ouyang J; Li G
    BMC Bioinformatics; 2022 Dec; 23(Suppl 8):532. PubMed ID: 36494630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response.
    Shahzad M; Tahir MA; Alhussein M; Mobin A; Shams Malick RA; Anwar MS
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37370938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning and multi-omics approach to predict drug responses in cancer.
    Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC
    BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting anti-cancer drug response by finding optimal subset of drugs.
    Yassaee Meybodi F; Eslahchi C
    Bioinformatics; 2021 Dec; 37(23):4509-4516. PubMed ID: 34170297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug-target interactions prediction.
    Zhang J; Xie M
    BMC Bioinformatics; 2022 Dec; 23(1):564. PubMed ID: 36581822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Matrix completion by deep matrix factorization.
    Fan J; Cheng J
    Neural Netw; 2018 Feb; 98():34-41. PubMed ID: 29154225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TGSA: protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation.
    Zhu Y; Ouyang Z; Chen W; Feng R; Chen DZ; Cao J; Wu J
    Bioinformatics; 2022 Jan; 38(2):461-468. PubMed ID: 34559177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. L
    Cui Z; Gao YL; Liu JX; Dai LY; Yuan SS
    BMC Bioinformatics; 2019 Jun; 20(Suppl 8):287. PubMed ID: 31182006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GPDRP: a multimodal framework for drug response prediction with graph transformer.
    Yang Y; Li P
    BMC Bioinformatics; 2023 Dec; 24(1):484. PubMed ID: 38105227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Logistic matrix factorisation and generative adversarial neural network-based method for predicting drug-target interactions.
    Abbou SI; Bouziane H; Chouarfia A
    Mol Divers; 2021 Aug; 25(3):1497-1516. PubMed ID: 34297278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MOLI: multi-omics late integration with deep neural networks for drug response prediction.
    Sharifi-Noghabi H; Zolotareva O; Collins CC; Ester M
    Bioinformatics; 2019 Jul; 35(14):i501-i509. PubMed ID: 31510700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CTDN (Convolutional Temporal Based Deep- Neural Network): An Improvised Stacked Hybrid Computational Approach for Anticancer Drug Response Prediction.
    Singh DP; Kaushik B
    Comput Biol Chem; 2023 Aug; 105():107868. PubMed ID: 37257399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepNC: a framework for drug-target interaction prediction with graph neural networks.
    Tran HNT; Thomas JJ; Ahamed Hassain Malim NH
    PeerJ; 2022; 10():e13163. PubMed ID: 35578674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network.
    Le DH; Pham VH
    J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Improved Anticancer Drug-Response Prediction Based on an Ensemble Method Integrating Matrix Completion and Ridge Regression.
    Liu C; Wei D; Xiang J; Ren F; Huang L; Lang J; Tian G; Li Y; Yang J
    Mol Ther Nucleic Acids; 2020 Sep; 21():676-686. PubMed ID: 32759058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A quantile regression forest based method to predict drug response and assess prediction reliability.
    Fang Y; Xu P; Yang J; Qin Y
    PLoS One; 2018; 13(10):e0205155. PubMed ID: 30289891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting drug-target interactions by dual-network integrated logistic matrix factorization.
    Hao M; Bryant SH; Wang Y
    Sci Rep; 2017 Jan; 7():40376. PubMed ID: 28079135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graph regularized non-negative matrix factorization with [Formula: see text] norm regularization terms for drug-target interactions prediction.
    Zhang J; Xie M
    BMC Bioinformatics; 2023 Oct; 24(1):375. PubMed ID: 37789278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer.
    Shin J; Piao Y; Bang D; Kim S; Jo K
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.