These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38574114)

  • 41. Dissecting the Genome for Drug Response Prediction.
    Pepe G; Carrino C; Parca L; Helmer-Citterich M
    Methods Mol Biol; 2022; 2449():187-196. PubMed ID: 35507263
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved drug response prediction by drug target data integration via network-based profiling.
    Pak M; Lee S; Sung I; Koo B; Kim S
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36752352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
    Liu Q; Xie L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008653. PubMed ID: 33577560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of Drug-Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding.
    Li J; Yang X; Guan Y; Pan Z
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014371
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines.
    Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting Anticancer Drug Response With Deep Learning Constrained by Signaling Pathways.
    Zhang H; Chen Y; Li F
    Front Bioinform; 2021; 1():639349. PubMed ID: 36303766
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches.
    Güvenç Paltun B; Mamitsuka H; Kaski S
    Brief Bioinform; 2021 Jan; 22(1):346-359. PubMed ID: 31838491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization.
    Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S
    Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DeepTTA: a transformer-based model for predicting cancer drug response.
    Jiang L; Jiang C; Yu X; Fu R; Jin S; Liu X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35348595
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting metabolite-disease associations based on auto-encoder and non-negative matrix factorization.
    Gao H; Sun J; Wang Y; Lu Y; Liu L; Zhao Q; Shuai J
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37466194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gamma distribution based predicting model for breast cancer drug response based on multi-layer feature selection.
    Cui T; Wang Z; Gu H; Qin P; Wang J
    Front Genet; 2023; 14():1095976. PubMed ID: 36816042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network.
    Liu P; Li H; Li S; Leung KS
    BMC Bioinformatics; 2019 Jul; 20(1):408. PubMed ID: 31357929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DeepMF: deciphering the latent patterns in omics profiles with a deep learning method.
    Chen L; Xu J; Li SC
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):648. PubMed ID: 31881818
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple similarity drug-target interaction prediction with random walks and matrix factorization.
    Liu B; Papadopoulos D; Malliaros FD; Tsoumakas G; Papadopoulos AN
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070659
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simplified similarity-based approach for drug-drug interaction prediction.
    Shtar G; Solomon A; Mazuz E; Rokach L; Shapira B
    PLoS One; 2023; 18(11):e0293629. PubMed ID: 37943768
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures.
    Shtar G; Rokach L; Shapira B
    PLoS One; 2019; 14(8):e0219796. PubMed ID: 31369568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.