These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet. Ljubotina M; Žnidarič M; Prosen T Phys Rev Lett; 2019 May; 122(21):210602. PubMed ID: 31283341 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear Fluctuating Hydrodynamics for Kardar-Parisi-Zhang Scaling in Isotropic Spin Chains. De Nardis J; Gopalakrishnan S; Vasseur R Phys Rev Lett; 2023 Nov; 131(19):197102. PubMed ID: 38000404 [TBL] [Abstract][Full Text] [Related]
5. Universal Kardar-Parisi-Zhang Dynamics in Integrable Quantum Systems. Ye B; Machado F; Kemp J; Hutson RB; Yao NY Phys Rev Lett; 2022 Dec; 129(23):230602. PubMed ID: 36563207 [TBL] [Abstract][Full Text] [Related]
6. Superdiffusion from Emergent Classical Solitons in Quantum Spin Chains. De Nardis J; Gopalakrishnan S; Ilievski E; Vasseur R Phys Rev Lett; 2020 Aug; 125(7):070601. PubMed ID: 32857584 [TBL] [Abstract][Full Text] [Related]
7. Fibonacci family of dynamical universality classes. Popkov V; Schadschneider A; Schmidt J; Schütz GM Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12645-50. PubMed ID: 26424449 [TBL] [Abstract][Full Text] [Related]
8. Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate. Fontaine Q; Squizzato D; Baboux F; Amelio I; Lemaître A; Morassi M; Sagnes I; Le Gratiet L; Harouri A; Wouters M; Carusotto I; Amo A; Richard M; Minguzzi A; Canet L; Ravets S; Bloch J Nature; 2022 Aug; 608(7924):687-691. PubMed ID: 36002483 [TBL] [Abstract][Full Text] [Related]
9. Direct Evidence for Universal Statistics of Stationary Kardar-Parisi-Zhang Interfaces. Iwatsuka T; Fukai YT; Takeuchi KA Phys Rev Lett; 2020 Jun; 124(25):250602. PubMed ID: 32639767 [TBL] [Abstract][Full Text] [Related]
10. Mirror symmetry breakdown in the Kardar-Parisi-Zhang universality class. Schmidt J; Schadschneider A Phys Rev E; 2024 Aug; 110(2-1):024114. PubMed ID: 39295002 [TBL] [Abstract][Full Text] [Related]
11. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class. Halpin-Healy T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127 [TBL] [Abstract][Full Text] [Related]
12. Universal Kardar-Parisi-Zhang transient diffusion in nonequilibrium anharmonic chains. Ming Y; Hu H; Li HM; Ding ZJ; Ren J Phys Rev E; 2023 Jan; 107(1-1):014204. PubMed ID: 36797957 [TBL] [Abstract][Full Text] [Related]
13. Kardar-Parisi-Zhang universality in two-component driven diffusive models: Symmetry and renormalization group perspectives. Dolai P; Simha A; Basu A Phys Rev E; 2024 Jun; 109(6-1):064122. PubMed ID: 39020889 [TBL] [Abstract][Full Text] [Related]
14. Kardar-Parisi-Zhang Interfaces with Curved Initial Shapes and Variational Formula. Fukai YT; Takeuchi KA Phys Rev Lett; 2020 Feb; 124(6):060601. PubMed ID: 32109110 [TBL] [Abstract][Full Text] [Related]
15. First-passage percolation under extreme disorder: From bond percolation to Kardar-Parisi-Zhang universality. Villarrubia D; Álvarez Domenech I; Santalla SN; Rodríguez-Laguna J; Córdoba-Torres P Phys Rev E; 2020 Jun; 101(6-1):062124. PubMed ID: 32688550 [TBL] [Abstract][Full Text] [Related]
16. Kardar-Parisi-Zhang universality of the Nagel-Schreckenberg model. de Gier J; Schadschneider A; Schmidt J; Schütz GM Phys Rev E; 2019 Nov; 100(5-1):052111. PubMed ID: 31869969 [TBL] [Abstract][Full Text] [Related]
17. Stretching of a Fractal Polymer around a Disc Reveals Kardar-Parisi-Zhang Scaling. Polovnikov KE; Nechaev SK; Grosberg AY Phys Rev Lett; 2022 Aug; 129(9):097801. PubMed ID: 36083665 [TBL] [Abstract][Full Text] [Related]
18. Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation. Rodríguez-Fernández E; Cuerno R Phys Rev E; 2020 May; 101(5-1):052126. PubMed ID: 32575191 [TBL] [Abstract][Full Text] [Related]
19. Restoring the Fluctuation-Dissipation Theorem in Kardar-Parisi-Zhang Universality Class through a New Emergent Fractal Dimension. Gomes-Filho MS; de Castro P; Liarte DB; Oliveira FA Entropy (Basel); 2024 Mar; 26(3):. PubMed ID: 38539771 [TBL] [Abstract][Full Text] [Related]
20. Scaling regimes of the one-dimensional phase turbulence in the deterministic complex Ginzburg-Landau equation. Vercesi F; Poirier S; Minguzzi A; Canet L Phys Rev E; 2024 Jun; 109(6-1):064149. PubMed ID: 39021028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]