These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38574585)

  • 21. Gait and speed selection in slender inertial swimmers.
    Gazzola M; Argentina M; Mahadevan L
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):3874-9. PubMed ID: 25770221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bending continuous structures with SMAs: a novel robotic fish design.
    Rossi C; Colorado J; Coral W; Barrientos A
    Bioinspir Biomim; 2011 Dec; 6(4):045005. PubMed ID: 22126900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
    Kohl AM; Kelasidi E; Mohammadi A; Maggiore M; Pettersen KY
    Bioinspir Biomim; 2016 Nov; 11(6):065005. PubMed ID: 27882895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Octopus-inspired multi-arm robotic swimming.
    Sfakiotakis M; Kazakidi A; Tsakiris DP
    Bioinspir Biomim; 2015 May; 10(3):035005. PubMed ID: 25970151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic Soft Underwater Robot Inspired by the Red Muscle and Tendon Structure of Fish.
    Aragaki D; Nishimura T; Sato R; Ming A
    Biomimetics (Basel); 2023 Mar; 8(2):. PubMed ID: 37092385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.
    Marras S; Porfiri M
    J R Soc Interface; 2012 Aug; 9(73):1856-68. PubMed ID: 22356819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.
    Russo RS; Blemker SS; Fish FE; Bart-Smith H
    Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-level swimmers' kinetic efficiency during the underwater phase of a grab start.
    Elipot M; Dietrich G; Hellard P; Houel N
    J Appl Biomech; 2010 Nov; 26(4):501-7. PubMed ID: 21245510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming.
    White CH; Lauder GV; Bart-Smith H
    Bioinspir Biomim; 2021 Mar; 16(2):. PubMed ID: 32927442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological and control criteria for self-stable underwater hopping.
    Calisti M; Laschi C
    Bioinspir Biomim; 2017 Nov; 13(1):016001. PubMed ID: 28976367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment.
    Butail S; Polverino G; Phamduy P; Del Sette F; Porfiri M
    Behav Brain Res; 2014 Dec; 275():269-80. PubMed ID: 25239605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of sensory feedback topology on the entrainment of a neural oscillator with a compliant foil for swimming systems.
    Carryon GN; Tangorra JL
    Bioinspir Biomim; 2020 Jun; 15(4):046013. PubMed ID: 32059194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Body movement distribution with respect to swimmer's glide position in human underwater undulatory swimming.
    Hochstein S; Blickhan R
    Hum Mov Sci; 2014 Dec; 38():305-18. PubMed ID: 25457427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots.
    Renda F; Giorgio-Serchi F; Boyer F; Laschi C
    Bioinspir Biomim; 2015 Sep; 10(5):055005. PubMed ID: 26414068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A minimal robophysical model of quadriflagellate self-propulsion.
    Diaz K; Robinson TL; Aydin YO; Aydin E; Goldman DI; Wan KY
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34359055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomimetic soft micro-swimmers: from actuation mechanisms to applications.
    Fu S; Wei F; Yin C; Yao L; Wang Y
    Biomed Microdevices; 2021 Jan; 23(1):6. PubMed ID: 33420838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of movement and movement-related feedback on the lamprey central pattern generator for locomotion.
    Guan L; Kiemel T; Cohen AH
    J Exp Biol; 2001 Jul; 204(Pt 13):2361-70. PubMed ID: 11507118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.