These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38574688)

  • 1. Pressurized pyrolysis of mattress residue: An alternative to landfill management.
    Serrano D; Horvat A; Mata RM; Costa P; Paraleda F
    Waste Manag; 2024 May; 181():11-19. PubMed ID: 38574688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation analysis and predicting modeling of pyrolysis gas based on landfill excavated waste pyrolysis characteristics.
    Du Y; Liu R; Han P; Wang J; Chen F; Chen G
    Chemosphere; 2024 Apr; 354():141740. PubMed ID: 38508460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge.
    Domínguez A; Fernández Y; Fidalgo B; Pis JJ; Menéndez JA
    Chemosphere; 2008 Jan; 70(3):397-403. PubMed ID: 17692361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiotic decomposition of municipal solid waste under elevated temperature landfill conditions.
    Moutushi T; Tupsakhare SS; Castaldi MJ
    Sci Total Environ; 2022 Jun; 823():153685. PubMed ID: 35134411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.
    Nolasco D; Lima RN; Hernández PA; Pérez NM
    Environ Sci Pollut Res Int; 2008 Jan; 15(1):51-60. PubMed ID: 18306888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Economic and environmental benefits of landfill gas utilisation in Oman.
    Abushammala MF; Qazi WA; Azam MH; Mehmood UA; Al-Mufragi GA; Alrawahi NA
    Waste Manag Res; 2016 Aug; 34(8):717-23. PubMed ID: 26922087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding landfill gas behavior at elevated temperature landfills.
    Krause MJ; Detwiler N; Eades W; Marro D; Schwarber A; Tolaymat T
    Waste Manag; 2023 Jun; 165():83-93. PubMed ID: 37087787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation.
    Scheutz C; Cassini F; De Schoenmaeker J; Kjeldsen P
    Waste Manag; 2017 May; 63():203-212. PubMed ID: 28161333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of methane production from shredder waste in landfills: The influence of temperature, moisture and metals.
    Fathi Aghdam E; Scheutz C; Kjeldsen P
    Waste Manag; 2017 May; 63():226-237. PubMed ID: 27912989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of pressure, moisture and temperature on pyrolysis of municipal solid waste under simulated landfill conditions and relevance to the field data from elevated temperature landfill.
    Tupsakhare S; Moutushi T; Castaldi MJ; Barlaz MA; Luettich S; Benson CH
    Sci Total Environ; 2020 Jun; 723():138031. PubMed ID: 32222504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis of waste tyres: a review.
    Williams PT
    Waste Manag; 2013 Aug; 33(8):1714-28. PubMed ID: 23735607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pyrolysis process coupled to a catalytic cracking stage: A potential waste-to-energy solution for mattress foam waste.
    Veses A; Sanahuja-Parejo O; Martínez I; Callén MS; López JM; García T; Murillo R
    Waste Manag; 2021 Feb; 120():415-423. PubMed ID: 33132000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes.
    Brandstätter C; Laner D; Fellner J
    Waste Manag; 2015 Jun; 40():100-11. PubMed ID: 25816770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of Gas Emissions using the LandGEM Model from the Landfill of Baft County, Kerman, Iran.
    Goushki MN; Shiri MA; Nozari M
    Environ Monit Assess; 2023 Nov; 195(12):1444. PubMed ID: 37946053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the methane-oxidizing capacity of landfill cover soil amended with biochar produced using different pyrolysis temperatures.
    Huang D; Yang L; Ko JH; Xu Q
    Sci Total Environ; 2019 Nov; 693():133594. PubMed ID: 31377353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.
    Fei X; Zekkos D; Raskin L
    Waste Manag; 2016 Sep; 55():276-87. PubMed ID: 26525969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From food waste and its digestate to nitrogen self-doped char and methane-rich syngas: Evolution of pyrolysis products during autogenic pressure carbonization.
    Peng W; Zhang H; Lü F; Shao L; He P
    J Hazard Mater; 2022 Feb; 424(Pt A):127249. PubMed ID: 34600375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.