These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38574841)

  • 41. Derivation of avian dermal LD50 values for dermal exposure models using in vitro percutaneous absorption of [
    Maul JD; Blackstock C; Brain RA
    Sci Total Environ; 2018 Jul; 630():517-525. PubMed ID: 29486444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated read-across workflow for predicting acute oral toxicity: I. The decision scheme in the QSAR toolbox.
    Kutsarova S; Mehmed A; Cherkezova D; Stoeva S; Georgiev M; Petkov T; Chapkanov A; Schultz TW; Mekenyan OG
    Regul Toxicol Pharmacol; 2021 Oct; 125():105015. PubMed ID: 34293429
    [TBL] [Abstract][Full Text] [Related]  

  • 43.
    Chushak Y; Gearhart JM; Ott D
    Chem Res Toxicol; 2021 Feb; 34(2):345-354. PubMed ID: 33206501
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sourcing data on chemical properties and hazard data from the US-EPA CompTox Chemicals Dashboard: A practical guide for human risk assessment.
    Williams AJ; Lambert JC; Thayer K; Dorne JCM
    Environ Int; 2021 Sep; 154():106566. PubMed ID: 33934018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of in silico models for prediction of Daphnia magna acute toxicity.
    Golbamaki A; Cassano A; Lombardo A; Moggio Y; Colafranceschi M; Benfenati E
    SAR QSAR Environ Res; 2014; 25(8):673-94. PubMed ID: 24911142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acute toxicity of some nerve agents and pesticides in rats.
    Misik J; Pavlikova R; Cabal J; Kuca K
    Drug Chem Toxicol; 2015 Jan; 38(1):32-6. PubMed ID: 24641243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States.
    DiBartolomeis M; Kegley S; Mineau P; Radford R; Klein K
    PLoS One; 2019; 14(8):e0220029. PubMed ID: 31386666
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.
    Zhu H; Martin TM; Ye L; Sedykh A; Young DM; Tropsha A
    Chem Res Toxicol; 2009 Dec; 22(12):1913-21. PubMed ID: 19845371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect.
    Koleva YK; Cronin MT; Madden JC; Schwöbel JA
    Toxicol In Vitro; 2011 Oct; 25(7):1281-93. PubMed ID: 21557997
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals.
    Crane M; Finnegan M; Weltje L; Kosmala-Grzechnik S; Gross M; Wheeler JR
    Regul Toxicol Pharmacol; 2016 Oct; 80():335-41. PubMed ID: 27177821
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A simple approach for assessment of toxicity of nitroaromatic compounds without using complex descriptors and computer codes.
    Keshavarz MH; Akbarzadeh AR
    SAR QSAR Environ Res; 2019 May; 30(5):347-361. PubMed ID: 31020866
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alternative methods for the median lethal dose (LD(50)) test: the up-and-down procedure for acute oral toxicity.
    Rispin A; Farrar D; Margosches E; Gupta K; Stitzel K; Carr G; Greene M; Meyer W; McCall D
    ILAR J; 2002; 43(4):233-43. PubMed ID: 12391399
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.
    Bhhatarai B; Gramatica P
    Mol Divers; 2011 May; 15(2):467-76. PubMed ID: 20803170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimation of reliability of predictions and model applicability domain evaluation in the analysis of acute toxicity (LD50).
    Sazonovas A; Japertas P; Didziapetris R
    SAR QSAR Environ Res; 2010 Jan; 21(1):127-48. PubMed ID: 20373217
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Examining the regulatory value of multi-route mammalian acute systemic toxicity studies.
    Seidle T; Prieto P; Bulgheroni A
    ALTEX; 2011; 28(2):95-102. PubMed ID: 21625826
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Top-priority fragment QSAR approach in predicting pesticide aquatic toxicity.
    Casalegno M; Sello G; Benfenati E
    Chem Res Toxicol; 2006 Nov; 19(11):1533-9. PubMed ID: 17112242
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of pesticide acute toxicity using two-dimensional chemical descriptors and target species classification.
    Martin TM; Lilavois CR; Barron MG
    SAR QSAR Environ Res; 2017 Jun; 28(6):525-539. PubMed ID: 28703021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The value of selected in vitro and in silico methods to predict acute oral toxicity in a regulatory context: results from the European Project ACuteTox.
    Prieto P; Kinsner-Ovaskainen A; Stanzel S; Albella B; Artursson P; Campillo N; Cecchelli R; Cerrato L; Díaz L; Di Consiglio E; Guerra A; Gombau L; Herrera G; Honegger P; Landry C; O'Connor JE; Páez JA; Quintas G; Svensson R; Turco L; Zurich MG; Zurbano MJ; Kopp-Schneider A
    Toxicol In Vitro; 2013 Jun; 27(4):1357-76. PubMed ID: 22922246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context.
    Lunghini F; Marcou G; Azam P; Horvath D; Patoux R; Van Miert E; Varnek A
    SAR QSAR Environ Res; 2019 Dec; 30(12):879-897. PubMed ID: 31607169
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An evaluation of the performance of selected (Q)SARs/expert systems for predicting acute oral toxicity.
    Nelms MD; Karmaus AL; Patlewicz G
    Comput Toxicol; 2020 Nov; 16():. PubMed ID: 33163737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.