These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38574916)

  • 1. Novel enhancement of interfacial interaction and properties in biodegradable polymer composites using green chemically treated spent coffee ground microfiller.
    Majrashi MAA; Bairwan RD; Mushtaq RY; Khalil HPSA; Badr MY; Alissa M; Abdullah CK; Ali BA; Rizg WY; Hosny KM
    Int J Biol Macromol; 2024 May; 266(Pt 2):131333. PubMed ID: 38574916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ɛ-caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber.
    Ju D; Han L; Li F; Chen S; Dong L
    Int J Biol Macromol; 2014 Jun; 67():343-50. PubMed ID: 24704167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of spent coffee ground (SCG) loading, matrix ratio and biological treatment of SCG on poly(hydroxybutyrate) (PHB)/poly(lactic acid) (PLA) polymer blend.
    Boey JY; Kong U; Lee CK; Lim GK; Oo CW; Tan CK; Ng CY; Azniwati AA; Tay GS
    Int J Biol Macromol; 2024 May; 266(Pt 2):131079. PubMed ID: 38537860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of polymer type on the properties of polypropylene composites with high loads of spent coffee grounds.
    Marques M; Gonçalves LFFF; Martins CI; Vale M; Duarte FM
    Waste Manag; 2022 Dec; 154():232-244. PubMed ID: 36274433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing biodegradable lignocellulosic films with tunable properties from spent coffee grounds: A sustainable alternative to plastics.
    Zhang S; Zhong X; Chen J; Nilghaz A; Yun X; Wan X; Tian J
    Int J Biol Macromol; 2024 Jul; 273(Pt 1):132918. PubMed ID: 38844282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-crosslinking of chitosan/spent coffee ground composites for enhanced durability and multifunctionality.
    Zheng NC; Chien HW
    Int J Biol Macromol; 2024 Jan; 255():128215. PubMed ID: 37992943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of spent coffee grounds as charring agent to prepare flame retardant poly(lactic acid) composites with improved toughness.
    Yan M; Pang Y; Shao W; Ma C; Zheng W
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130534. PubMed ID: 38432276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spent Coffee as a Composite Filler for Wastewater Treatment.
    Kruszelnicka I; Michałkiewicz M; Ginter-Kramarczyk D; Muszyński P; Materna K; Wojcieszak M; Mizera K; Ryszkowska J
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental sustainability assessment of biodegradable bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from agro-residues: Production and end-of-life scenarios.
    Nhu TT; Boone L; Guillard V; Chatellard L; Reis M; Matos M; Dewulf J
    J Environ Manage; 2024 Apr; 356():120522. PubMed ID: 38493645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic.
    Bhardwaj R; Mohanty AK; Drzal LT; Pourboghrat F; Misra M
    Biomacromolecules; 2006 Jun; 7(6):2044-51. PubMed ID: 16768432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of additives on the biodegradation of polyhydroxyalkanoate (PHA) in marine field trials.
    Read T; Chan CM; Chaléat C; Laycock B; Pratt S; Lant P
    Sci Total Environ; 2024 Jun; 931():172771. PubMed ID: 38670377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of spent coffee grounds as fillers to prepare polypropylene composites for food packaging applications.
    Song W; Yang Y; Cheng X; Jiang M; Zhang R; Militky J; Cai Y
    Microsc Res Tech; 2023 Nov; 86(11):1475-1483. PubMed ID: 37458113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production.
    Bomfim ASC; Oliveira DM; Voorwald HJC; Benini KCCC; Dumont MJ; Rodrigue D
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV/PBAT Matrix Filled with Coffee Silverskin.
    Sarasini F; Luzi F; Dominici F; Maffei G; Iannone A; Zuorro A; Lavecchia R; Torre L; Carbonell-Verdu A; Balart R; Puglia D
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Mechanical and Water Absorption Properties of Rice Husk-Derived Nano-SiO₂ Reinforced PHBV Composites.
    Wang L; Guo Y; Chen Y; Chen T; Zhu S; Zhang T; Liu S
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging.
    Cacciotti I; Mori S; Cherubini V; Nanni F
    Int J Biol Macromol; 2018 Jun; 112():567-575. PubMed ID: 29408420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil.
    Dordevic D; Dordevic S; Abdullah FAA; Mader T; Medimorec N; Tremlova B; Kushkevych I
    Foods; 2023 Jul; 12(13):. PubMed ID: 37444364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable, UV-blocking, and antioxidant films from lignocellulosic fibers of spent coffee grounds.
    Bhattarai S; Janaswamy S
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126798. PubMed ID: 37689289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applications.
    Amaro L; Correia DM; Marques-Almeida T; Martins PM; Pérez L; Vilas JL; Botelho G; Lanceros-Mendez S; Ribeiro C
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of bio-based biodegradable poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composite foams for highly efficient oil-water separation.
    Yang H; Xu G; Li J; Wang L; Yu K; Yan J; Zhang S; Zhou H
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128750. PubMed ID: 38101682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.