These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38575024)
1. Unveiling behaviors of 8:2 fluorotelomer sulfonic acid (8:2 FTSA) in Arabidopsis thaliana: Bioaccumulation, biotransformation and molecular mechanisms of phytotoxicity. Chi F; Zhao S; Yang L; Yang X; Zhao X; Zhao R; Zhu L; Zhan J Sci Total Environ; 2024 Jun; 927():172165. PubMed ID: 38575024 [TBL] [Abstract][Full Text] [Related]
2. Formation of perfluorocarboxylic acids (PFCAs) during the exposure of earthworms to 6:2 fluorotelomer sulfonic acid (6:2 FTSA). Zhao S; Liu T; Zhu L; Yang L; Zong Y; Zhao H; Hu L; Zhan J Sci Total Environ; 2021 Mar; 760():143356. PubMed ID: 33158528 [TBL] [Abstract][Full Text] [Related]
3. Fate of 6:2 fluorotelomer sulfonic acid in pumpkin (Cucurbita maxima L.) based on hydroponic culture: Uptake, translocation and biotransformation. Zhao S; Liang T; Zhu L; Yang L; Liu T; Fu J; Wang B; Zhan J; Liu L Environ Pollut; 2019 Sep; 252(Pt A):804-812. PubMed ID: 31200206 [TBL] [Abstract][Full Text] [Related]
4. Fate and Transformation of 6:2 Fluorotelomer Sulfonic Acid Affected by Plant, Nutrient, Bioaugmentation, and Soil Microbiome Interactions. Yang SH; Shan L; Chu KH Environ Sci Technol; 2022 Aug; 56(15):10721-10731. PubMed ID: 35830472 [TBL] [Abstract][Full Text] [Related]
5. Stability and Biotransformation of 6:2 Fluorotelomer Sulfonic Acid, Sulfonamide Amine Oxide, and Sulfonamide Alkylbetaine in Aerobic Sludge. Fang B; Zhang Y; Chen H; Qiao B; Yu H; Zhao M; Gao M; Li X; Yao Y; Zhu L; Sun H Environ Sci Technol; 2024 Feb; 58(5):2446-2457. PubMed ID: 38178542 [TBL] [Abstract][Full Text] [Related]
6. Behaviors of 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) in wheat seedlings: Bioaccumulation, biotransformation and ecotoxicity. Zhao H; Yang L; Yang X; Zhao S Ecotoxicol Environ Saf; 2022 Jun; 238():113585. PubMed ID: 35525114 [TBL] [Abstract][Full Text] [Related]
7. Desulfonation and defluorination of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) by Rhodococcus jostii RHA1: Carbon and sulfur sources, enzymes, and pathways. Yang SH; Shi Y; Strynar M; Chu KH J Hazard Mater; 2022 Feb; 423(Pt A):127052. PubMed ID: 34523492 [TBL] [Abstract][Full Text] [Related]
8. Biotransformation potential of 6:2 fluorotelomer sulfonate (6:2 FTSA) in aerobic and anaerobic sediment. Zhang S; Lu X; Wang N; Buck RC Chemosphere; 2016 Jul; 154():224-230. PubMed ID: 27058914 [TBL] [Abstract][Full Text] [Related]
9. Fluorotelomer betaines and sulfonic acid in aerobic wetland soil: Stability, biotransformation, and bacterial community response. Fang B; Chen H; Zhou Y; Qiao B; Baqar M; Wang Y; Yao Y; Sun H J Hazard Mater; 2024 Sep; 477():135261. PubMed ID: 39032178 [TBL] [Abstract][Full Text] [Related]
10. Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice. Sheng N; Zhou X; Zheng F; Pan Y; Guo X; Guo Y; Sun Y; Dai J Arch Toxicol; 2017 Aug; 91(8):2909-2919. PubMed ID: 28032147 [TBL] [Abstract][Full Text] [Related]
11. Using regular and transcriptomic analyses to investigate the biotransformation mechanism and phytotoxic effects of 6:2 fluorotelomer carboxylic acid (6:2 FTCA) in pumpkin (Cucurbita maxima L.). Chi F; Zhao J; Yang L; Yang X; Zhao X; Zhao S; Zhan J Sci Total Environ; 2024 Jan; 906():167901. PubMed ID: 37858819 [TBL] [Abstract][Full Text] [Related]
12. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. Zhang W; Pang S; Lin Z; Mishra S; Bhatt P; Chen S Environ Pollut; 2021 Mar; 272():115908. PubMed ID: 33190976 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic response of Gordonia sp. strain NB4-1Y when provided with 6:2 fluorotelomer sulfonamidoalkyl betaine or 6:2 fluorotelomer sulfonate as sole sulfur source. Bottos EM; Al-Shabib EY; Shaw DMJ; McAmmond BM; Sharma A; Suchan DM; Cameron ADS; Van Hamme JD Biodegradation; 2020 Dec; 31(4-6):407-422. PubMed ID: 33150552 [TBL] [Abstract][Full Text] [Related]
14. Immunotoxicity and Transcriptome Analyses of Zebrafish ( Zhang J; Ren Z; Chen M Toxics; 2023 May; 11(5):. PubMed ID: 37235273 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic and metabolomic analysis provides insight into imazethapyr toxicity to non-target plants. Liu L; Chen Z; Zhang N; Liu J; Tian Z; Sun C Environ Sci Pollut Res Int; 2024 Apr; 31(19):28368-28378. PubMed ID: 38532215 [TBL] [Abstract][Full Text] [Related]
16. Aerobic biotransformation of fluorotelomer compounds in landfill leachate-sediment. Hamid H; Li LY; Grace JR Sci Total Environ; 2020 Apr; 713():136547. PubMed ID: 31958722 [TBL] [Abstract][Full Text] [Related]
17. Metabolomics combined with physiology and transcriptomics reveal how Nicotiana tabacum leaves respond to cold stress. Song X; Wang H; Wang Y; Zeng Q; Zheng X Plant Physiol Biochem; 2024 Mar; 208():108464. PubMed ID: 38442629 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms for tissue-specific accumulation and phase I/II transformation of 6:2 fluorotelomer phosphate diester in earthworm (M. guillelmi). Zhu Y; Jia Y; Liu M; Yang L; Yi S; Feng X; Zhu L Environ Int; 2021 Jun; 151():106451. PubMed ID: 33647835 [TBL] [Abstract][Full Text] [Related]
19. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems. Zhao S; Zhu L Environ Pollut; 2017 Jan; 220(Pt A):124-131. PubMed ID: 27639617 [TBL] [Abstract][Full Text] [Related]
20. Accumulation and phytotoxicity of perfluorooctanoic acid in the model plant species Arabidopsis thaliana. Yang X; Ye C; Liu Y; Zhao FJ Environ Pollut; 2015 Nov; 206():560-6. PubMed ID: 26301694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]