BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 38575034)

  • 1. Microbiologically induced calcite precipitation (MICP) in situ remediated heavy metal contamination in sludge nutrient soil.
    Ji G; Huan C; Zeng Y; Lyu Q; Du Y; Liu Y; Xu L; He Y; Tian X; Yan Z
    J Hazard Mater; 2024 Jul; 473():134600. PubMed ID: 38759409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of microbially induced calcium carbonate precipitation (MICP) process in concrete self-healing and environmental restoration to facilitate carbon neutrality: a critical review.
    Chang J; Yang D; Lu C; Shu Z; Deng S; Tan L; Wen S; Huang K; Duan P
    Environ Sci Pollut Res Int; 2024 Jun; 31(26):38083-38098. PubMed ID: 38806987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic biocementation: harnessing Comamonas and Bacillus ureolytic bacteria for enhanced sand stabilization.
    Rajasekar A; Zhao C; Wu S; Murava RT; Wilkinson S
    World J Microbiol Biotechnol; 2024 Jun; 40(7):229. PubMed ID: 38825655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of biopolymer chitosan on manganese immobilization improvement by microbial‑induced carbonate precipitation.
    Zhang W; Shen L; Xu R; Dong X; Luo S; Gu H; Qin F; Liu H
    Ecotoxicol Environ Saf; 2024 Jul; 279():116496. PubMed ID: 38816322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-tricalcium phosphate enhanced biomineralization of Cd
    Zhang L; Zhang J; Zhou R; Si Y
    J Hazard Mater; 2024 Aug; 474():134624. PubMed ID: 38810579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches.
    Hassan S; Bhadwal SS; Khan M; Sabreena ; Nissa KU; Shah RA; Bhat HM; Bhat SA; Lone IM; Ganai BA
    Chemosphere; 2024 May; 356():141889. PubMed ID: 38583533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-biogenic heavy metals adsorptive remediation for enhanced soil health and sustainable agricultural production.
    Jha A; Barsola B; Pathania D; Sonu ; Raizada P; Thakur P; Singh P; Rustagi S; Khosla A; Chaudhary V
    Environ Res; 2024 Jul; 252(Pt 3):118926. PubMed ID: 38657848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of microbial community structure changes on the migration and release of typical heavy metal (loid)s during the revegetation process of mercury-thallium mining waste slag.
    Li X; Wu Y; Yang K; Zhu M; Wen J
    Environ Res; 2024 Jun; 251(Pt 2):118716. PubMed ID: 38490627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus-based soil prophylactics for managing Pb contamination in soil: Slow-release kinetics and microbiological effects.
    Dai L; Li J; Zhang J; Zeng Q; Liu T; Yu Q; Tao S; Zhou M; Hou H
    Sci Total Environ; 2024 Aug; 940():173647. PubMed ID: 38823702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptides Used for Heavy Metal Remediation: A Promising Approach.
    Luo Y; Zhang Y; Xiong Z; Chen X; Sha A; Xiao W; Peng L; Zou L; Han J; Li Q
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced microbial remediation of uranium tailings through red soil utilization.
    An Y; Sun J; Ren L; Gao Y; Wu X; Lian G
    J Environ Radioact; 2024 Jul; 277():107463. PubMed ID: 38815432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of extracellular polymeric substances on MICP solidifying rare earth slags and stabilizing Th and U.
    Zou CX; Sun ZB; Wang WD; Wang T; Bo YX; Wang Z; Zheng CL
    World J Microbiol Biotechnol; 2024 Jun; 40(7):232. PubMed ID: 38834810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of terbium by
    Bian Z; Dong W; Ning Z; Song Y; Hu K
    Front Microbiol; 2024; 15():1416731. PubMed ID: 38887713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic characterization of a novel ureolytic bacteria, Lysinibacillus capsici TSBLM, and its application to the remediation of acidic heavy metal-contaminated soil.
    Hu X; He B; Liu Y; Ma S; Yu C
    Sci Total Environ; 2024 Jun; 927():172170. PubMed ID: 38575034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomineralization of heavy metals based on urea transport and hydrolysis within a new bacterial isolate, B. intermedia TSBOI.
    Hu X; Yu C; Li X; Zou J; Du Y; Paterson DM
    J Hazard Mater; 2024 May; 469():134049. PubMed ID: 38522207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals.
    Kumari D; Qian XY; Pan X; Achal V; Li Q; Gadd GM
    Adv Appl Microbiol; 2016; 94():79-108. PubMed ID: 26917242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole cell evaluation and the enzymatic kinetic study of urease from ureolytic bacteria affected by potentially toxic elements.
    Li W; Fishman A; Achal V
    Microbiol Res; 2022 Dec; 265():127208. PubMed ID: 36162147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria.
    Zhao X; Wang M; Wang H; Tang D; Huang J; Sun Y
    Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30669299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment.
    Taharia M; Dey D; Das K; Sukul U; Chen JS; Banerjee P; Dey G; Sharma RK; Lin PY; Chen CY
    Ecotoxicol Environ Saf; 2024 Feb; 271():115990. PubMed ID: 38262090
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.