BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38575081)

  • 1. Enhanced biomethane production from Scenedesmus sp. using polymer harvesting and expired COVID-19 disinfectant for pretreatment.
    Vu HP; Kuzhiumparambil U; Cai Z; Wang Q; Ralph PJ; Nghiem LD
    Chemosphere; 2024 May; 356():141869. PubMed ID: 38575081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls-
    Dębowski M; Kazimierowicz J; Świca I; Zieliński M
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae.
    Avila R; Carrero E; Vicent T; Blánquez P
    Waste Manag; 2021 Apr; 124():254-263. PubMed ID: 33639410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical optimization of thermal pretreatment conditions for enhanced biomethane production from defatted algal biomass.
    Chandra TS; Suvidha G; Mukherji S; Chauhan VS; Vidyashankar S; Krishnamurthi K; Sarada R; Mudliar SN
    Bioresour Technol; 2014 Jun; 162():157-65. PubMed ID: 24747395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic Co-Digestion of Microalgae Scenedesmus sp. and TWAS for Biomethane Production.
    Garoma T; Nguyen D
    Water Environ Res; 2016 Jan; 88(1):13-20. PubMed ID: 26803022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus.
    Bian X; Jin W; Gu Q; Zhou X; Xi Y; Tu R; Han SF; Xie GJ; Gao SH; Wang Q
    World J Microbiol Biotechnol; 2018 Feb; 34(3):39. PubMed ID: 29460187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesizing cationic polymers and tuning their properties for microalgae harvesting.
    Aditya L; Vu HP; Johir MAH; Mao S; Ansari A; Fu Q; Nghiem LD
    Sci Total Environ; 2024 Mar; 917():170423. PubMed ID: 38281644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low energy harvesting of hydrophobic microalgae (Tribonema sp.) by electro-flotation without coagulation.
    Qi S; Chen J; Hu Y; Hu Z; Zhan X; Stengel DB
    Sci Total Environ; 2022 Sep; 838(Pt 1):155866. PubMed ID: 35568179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harvesting of freshwater microalgae Scenedesmus sp. by electro-coagulation-flocculation for biofuel production: effects on spent medium recycling and lipid extraction.
    Pandey A; Shah R; Yadav P; Verma R; Srivastava S
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3497-3507. PubMed ID: 31832955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement effect of ethyl-2-methyl acetoacetate on triacylglycerols production by a freshwater microalga, Scenedesmus sp. LX1.
    Xin L; Hong-Ying H; Jia Y; Yin-Hu W
    Bioresour Technol; 2010 Dec; 101(24):9819-21. PubMed ID: 20716483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. biomass.
    González-Fernández C; Sialve B; Bernet N; Steyer JP
    Bioresour Technol; 2013 Feb; 129():219-23. PubMed ID: 23247149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of biomethane production potential from dominant microalgae.
    Fermoso FG; Beltran C; Jimenez A; Fernández MJ; Rincón B; Borja R; Jeison D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Oct; 51(12):1062-7. PubMed ID: 27409043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotechnological potential of Chlorella sp. and Scenedesmus sp. microalgae to endure high CO
    Ramos-Ibarra JR; Snell-Castro R; Neria-Casillas JA; Choix FJ
    Bioprocess Biosyst Eng; 2019 Oct; 42(10):1603-1610. PubMed ID: 31190283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment.
    Passos F; Hernández-Mariné M; García J; Ferrer I
    Water Res; 2014 Feb; 49():351-9. PubMed ID: 24183557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of low-temperature pretreatment on the solubilization and biomethane potential of microalgae biomass grown in synthetic and wastewater media.
    Kinnunen V; Rintala J
    Bioresour Technol; 2016 Dec; 221():78-84. PubMed ID: 27639227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production.
    Cho S; Park S; Seon J; Yu J; Lee T
    Bioresour Technol; 2013 Sep; 143():330-6. PubMed ID: 23811066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment.
    He S; Fan X; Katukuri NR; Yuan X; Wang F; Guo RB
    Bioresour Technol; 2016 Mar; 204():145-151. PubMed ID: 26773949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of Scenedesmus sp. to microwave treatment: Enhancement of lipid, exopolysaccharide and biomass production.
    Sivaramakrishnan R; Suresh S; Pugazhendhi A; Mercy Nisha Pauline J; Incharoensakdi A
    Bioresour Technol; 2020 Sep; 312():123562. PubMed ID: 32504948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flocculation performance and mechanism of fungal pellets on harvesting of microalgal biomass.
    Pei XY; Ren HY; Liu BF
    Bioresour Technol; 2021 Feb; 321():124463. PubMed ID: 33290984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-digestion of microalga-bacteria biomass with papaya waste for methane production.
    Cea-Barcia G; Pérez J; Buitrón G
    Water Sci Technol; 2018 Aug; 78(1-2):125-131. PubMed ID: 30101795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.