These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 38575678)
1. Non-symmetric stapling of native peptides. Chen FJ; Lin W; Chen FE Nat Rev Chem; 2024 May; 8(5):304-318. PubMed ID: 38575678 [TBL] [Abstract][Full Text] [Related]
2. Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Li B; Tang H; Turlik A; Wan Z; Xue XS; Li L; Yang X; Li J; He G; Houk KN; Chen G Angew Chem Int Ed Engl; 2021 Mar; 60(12):6646-6652. PubMed ID: 33338303 [TBL] [Abstract][Full Text] [Related]
3. A Thiol-Ene Coupling Approach to Native Peptide Stapling and Macrocyclization. Wang Y; Chou DH Angew Chem Int Ed Engl; 2015 Sep; 54(37):10931-4. PubMed ID: 26189498 [TBL] [Abstract][Full Text] [Related]
4. A study of 2-component i, i + 3 peptide stapling using thioethers. St Louis LE; Rodriguez TM; Waters ML Bioorg Med Chem; 2018 Mar; 26(6):1203-1205. PubMed ID: 29122441 [TBL] [Abstract][Full Text] [Related]
5. In-Bridge Stereochemistry: A Determinant of Stapled Peptide Conformation and Activity. Zhang J; Dong S Chembiochem; 2024 Apr; 25(7):e202300747. PubMed ID: 38191871 [TBL] [Abstract][Full Text] [Related]
6. Therapeutic stapled peptides: Efficacy and molecular targets. Li Y; Wu M; Fu Y; Xue J; Yuan F; Qu T; Rissanou AN; Wang Y; Li X; Hu H Pharmacol Res; 2024 May; 203():107137. PubMed ID: 38522761 [TBL] [Abstract][Full Text] [Related]
7. Double Strain-Promoted Macrocyclization for the Rapid Selection of Cell-Active Stapled Peptides. Lau YH; Wu Y; Rossmann M; Tan BX; de Andrade P; Tan YS; Verma C; McKenzie GJ; Venkitaraman AR; Hyvönen M; Spring DR Angew Chem Int Ed Engl; 2015 Dec; 54(51):15410-3. PubMed ID: 26768531 [TBL] [Abstract][Full Text] [Related]
8. Disulfide Click Reaction for Stapling of S-terminal Peptides. Yu Q; Bai L; Jiang X Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202314379. PubMed ID: 37950389 [TBL] [Abstract][Full Text] [Related]
9. A two-component 'double-click' approach to peptide stapling. Lau YH; Wu Y; de Andrade P; Galloway WR; Spring DR Nat Protoc; 2015 Apr; 10(4):585-94. PubMed ID: 25763835 [TBL] [Abstract][Full Text] [Related]
10. Diversity-Oriented Peptide Stapling: A Third Generation Copper-Catalysed Azide-Alkyne Cycloaddition Stapling and Functionalisation Strategy. Tran PT; Larsen CØ; Røndbjerg T; De Foresta M; Kunze MB; Marek A; Løper JH; Boyhus LE; Knuhtsen A; Lindorff-Larsen K; Pedersen DS Chemistry; 2017 Mar; 23(14):3490-3495. PubMed ID: 28106305 [TBL] [Abstract][Full Text] [Related]
11. A novel peptide stapling strategy enables the retention of ring-closing amino acid side chains for the Wnt/β-catenin signalling pathway. Wu Y; Li YH; Li X; Zou Y; Liao HL; Liu L; Chen YG; Bierer D; Hu HG Chem Sci; 2017 Nov; 8(11):7368-7373. PubMed ID: 29163887 [TBL] [Abstract][Full Text] [Related]
12. Peptide Stapling through Site-Directed Conjugation of Triazine Moieties to the Tyrosine Residues of a Peptide. Zhang Y; Yin R; Jiang H; Wang C; Wang X; Wang D; Zhang K; Yu R; Li X; Jiang T Org Lett; 2023 Apr; 25(13):2248-2252. PubMed ID: 36966420 [TBL] [Abstract][Full Text] [Related]
13. Integrated Anchored Stapling and Hierarchical Dynamics: MSICDA-Driven CREBBP Bromodomain Inhibition. Wang X; Chen X; Chen Z; Xu W; Lai R; Qiu X; Zeng Z; Wang C; Wang Z; Wang J J Chem Inf Model; 2024 Jun; 64(12):4739-4758. PubMed ID: 38863138 [TBL] [Abstract][Full Text] [Related]
14. Site-Selective Polyfluoroaryl Modification and Unsymmetric Stapling of Unprotected Peptides. Wang M; Pan D; Zhang Q; Lei Y; Wang C; Jia H; Mou L; Miao X; Ren X; Xu Z J Am Chem Soc; 2024 Mar; 146(10):6675-6685. PubMed ID: 38427024 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous Stabilization and Multimerization of a Peptide α-Helix by Stapling Polymerization. Lee YJ; Han S; Lim YB Macromol Rapid Commun; 2016 Jul; 37(13):1021-6. PubMed ID: 27162197 [TBL] [Abstract][Full Text] [Related]
16. Structure-based derivation and optimization of YAP-like coactivator-derived peptides to selectively target TEAD family transcription factors by hydrocarbon stapling and cyclization. He B; Wu T; He P; Lv F; Liu H Chem Biol Drug Des; 2021 Jun; 97(6):1129-1136. PubMed ID: 33283479 [TBL] [Abstract][Full Text] [Related]
17. Peptide stapling techniques based on different macrocyclisation chemistries. Lau YH; de Andrade P; Wu Y; Spring DR Chem Soc Rev; 2015 Jan; 44(1):91-102. PubMed ID: 25199043 [TBL] [Abstract][Full Text] [Related]
18. Hydrocarbon stapling modification of peptide alyteserin-2a: Discovery of novel stapled peptide antitumor agents. Yu Z; Tang H; Cong W; Gao F; Li H; Hu H; Wang X; He S J Pept Sci; 2022 Jul; 28(7):e3401. PubMed ID: 34989078 [TBL] [Abstract][Full Text] [Related]
19. Review stapling peptides using cysteine crosslinking. Fairlie DP; Dantas de Araujo A Biopolymers; 2016 Nov; 106(6):843-852. PubMed ID: 27178225 [TBL] [Abstract][Full Text] [Related]
20. Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Li X; Tolbert WD; Hu HG; Gohain N; Zou Y; Niu F; He WX; Yuan W; Su JC; Pazgier M; Lu W Chem Sci; 2019 Feb; 10(5):1522-1530. PubMed ID: 30809370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]