These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38575737)
1. Recent advances in the biosensors application for reviving infectious disease management in silkworm model: a new way to combat microbial pathogens. Mondal R; Shaw S; Mandal P; Dam P; Mandal AK Arch Microbiol; 2024 Apr; 206(5):206. PubMed ID: 38575737 [TBL] [Abstract][Full Text] [Related]
2. Biosensor Technologies for Early Detection and Quantification of Plant Pathogens. Dyussembayev K; Sambasivam P; Bar I; Brownlie JC; Shiddiky MJA; Ford R Front Chem; 2021; 9():636245. PubMed ID: 34150716 [TBL] [Abstract][Full Text] [Related]
3. Common strategies in silkworm disease resistance breeding research. Li K; Dong Z; Pan M Pest Manag Sci; 2023 Jul; 79(7):2287-2298. PubMed ID: 36935349 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of iTRAQ-based proteomes for cocoons between the domestic silkworm (Bombyx mori) and wild silkworm (Bombyx mandarina). Dai ZJ; Sun W; Zhang Z J Proteomics; 2019 Feb; 192():366-373. PubMed ID: 30287406 [TBL] [Abstract][Full Text] [Related]
5. Scope of Onsite, Portable Prevention Diagnostic Strategies for Shukla S; Singh P; Shukla S; Ali S; Didwania N Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504100 [TBL] [Abstract][Full Text] [Related]
6. Microbiological safety assessment of silkworm farms: a case study. Tassoni L; Belluco S; Marzoli F; Contiero B; Cremasco S; Saviane A; Cappellozza S; Dalle Zotte A Animal; 2024 Aug; 18(8):101221. PubMed ID: 39013331 [TBL] [Abstract][Full Text] [Related]
7. Advances in the Arms Race Between Silkworm and Baculovirus. Jiang L; Goldsmith MR; Xia Q Front Immunol; 2021; 12():628151. PubMed ID: 33633750 [TBL] [Abstract][Full Text] [Related]
8. The Mechanisms of Silkworm Resistance to the Baculovirus and Antiviral Breeding. Hu Z; Zhu F; Chen K Annu Rev Entomol; 2023 Jan; 68():381-399. PubMed ID: 36689303 [TBL] [Abstract][Full Text] [Related]
9. Transgenic genome editing-derived antiviral therapy to nucleopolyhedrovirus infection in the industrial strain of the silkworm. Yang X; Zhang X; Liu Y; Yang D; Liu Z; Chen K; Tang L; Wang M; Hu Z; Zhang S; Huang Y Insect Biochem Mol Biol; 2021 Dec; 139():103672. PubMed ID: 34700022 [TBL] [Abstract][Full Text] [Related]
10. Construction of Baculovirus-Inducible CRISPR/Cas9 Antiviral System Targeting BmNPV in Liu Y; Chen D; Zhang X; Chen S; Yang D; Tang L; Yang X; Wang Y; Luo X; Wang M; Hu Z; Huang Y Viruses; 2021 Dec; 14(1):. PubMed ID: 35062262 [TBL] [Abstract][Full Text] [Related]
11. Effects of phoxim pesticide on the immune system of silkworm midgut. Li F; Li M; Wang H; Mao T; Chen J; Lu Z; Qu J; Fang Y; Li B Pestic Biochem Physiol; 2020 Mar; 164():58-64. PubMed ID: 32284137 [TBL] [Abstract][Full Text] [Related]
12. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus. Qin L; Xia H; Shi H; Zhou Y; Chen L; Yao Q; Liu X; Feng F; Yuan Y; Chen K J Proteomics; 2012 Jun; 75(12):3630-8. PubMed ID: 22546490 [TBL] [Abstract][Full Text] [Related]
13. Label-Free Biosensors for Laboratory-Based Diagnostics of Infections: Current Achievements and New Trends. Andryukov BG; Besednova NN; Romashko RV; Zaporozhets TS; Efimov TA Biosensors (Basel); 2020 Feb; 10(2):. PubMed ID: 32059538 [TBL] [Abstract][Full Text] [Related]
14. Sublethal dose of phoxim and Bombyx mori nucleopolyhedrovirus interact to elevate silkworm mortality. Gu Z; Li F; Hu J; Ding C; Wang C; Tian J; Xue B; Xu K; Shen W; Li B Pest Manag Sci; 2017 Mar; 73(3):554-561. PubMed ID: 27220913 [TBL] [Abstract][Full Text] [Related]
15. Quantitative label-free proteomic analysis reveals differentially expressed proteins in the digestive juice of resistant versus susceptible silkworm strains and their predicted impacts on BmNPV infection. Zhang SZ; Wang J; Zhu LB; Toufeeq S; Xu X; You LL; Li B; Hu P; Xu JP J Proteomics; 2020 Jan; 210():103527. PubMed ID: 31610263 [TBL] [Abstract][Full Text] [Related]
16. [Comparison of chemical constituents of wild silkworm cocoon and domestic silkworm cocoon by UHPLC-MS technology]. Zhang Y; Dong Z; Zhao D; Li H; Wang L; Lin Y; Zhao P Sheng Wu Gong Cheng Xue Bao; 2019 Aug; 35(8):1546-1556. PubMed ID: 31441626 [TBL] [Abstract][Full Text] [Related]
17. Microarray analysis of New Green Cocoon associated genes in silkworm, Bombyx mori. Lu YR; He SZ; Tong XL; Han MJ; Li CL; Li ZQ; Dai FY Insect Sci; 2016 Jun; 23(3):386-95. PubMed ID: 26936509 [TBL] [Abstract][Full Text] [Related]
18. The differences in cocoon and silk qualities among sex-related mulberry and silkworm feeding groups. Bu C; Zheng R; Huang G; Wu J; Liu G; Donald ML; Dong T; Xu X PLoS One; 2022; 17(6):e0270021. PubMed ID: 35771800 [TBL] [Abstract][Full Text] [Related]
19. [Development of Large Scale Silkworm-rearing Technologies for the GMP Production of Biologics]. Tomita M Yakugaku Zasshi; 2018; 138(7):875-884. PubMed ID: 29962463 [TBL] [Abstract][Full Text] [Related]
20. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Ray M; Ray A; Dash S; Mishra A; Achary KG; Nayak S; Singh S Biosens Bioelectron; 2017 Jan; 87():708-723. PubMed ID: 27649327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]