These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3857608)

  • 1. Initiation of transcription from each of the two human mitochondrial promoters requires unique nucleotides at the transcriptional start sites.
    Hixson JE; Clayton DA
    Proc Natl Acad Sci U S A; 1985 May; 82(9):2660-4. PubMed ID: 3857608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA.
    Chang DD; Clayton DA
    Cell; 1984 Mar; 36(3):635-43. PubMed ID: 6697390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Priming of human mitochondrial DNA replication occurs at the light-strand promoter.
    Chang DD; Clayton DA
    Proc Natl Acad Sci U S A; 1985 Jan; 82(2):351-5. PubMed ID: 2982153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a promoter for transcription of the heavy strand of human mtDNA: in vitro transcription and deletion mutagenesis.
    Bogenhagen DF; Applegate EF; Yoza BK
    Cell; 1984 Apr; 36(4):1105-13. PubMed ID: 6323020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise assignment of the heavy-strand promoter of mouse mitochondrial DNA: cognate start sites are not required for transcriptional initiation.
    Chang DD; Clayton DA
    Mol Cell Biol; 1986 Sep; 6(9):3262-7. PubMed ID: 3785226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of primary transcriptional start sites of mouse mitochondrial DNA: accurate in vitro initiation of both heavy- and light-strand transcripts.
    Chang DD; Clayton DA
    Mol Cell Biol; 1986 May; 6(5):1446-53. PubMed ID: 3785171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of initiation sites for transcription of Xenopus laevis mitochondrial DNA.
    Bogenhagen DF; Yoza BK; Cairns SS
    J Biol Chem; 1986 Jun; 261(18):8488-94. PubMed ID: 3013854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter.
    L'Abbé D; Duhaime JF; Lang BF; Morais R
    J Biol Chem; 1991 Jun; 266(17):10844-50. PubMed ID: 1710214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise assignment of the light-strand promoter of mouse mitochondrial DNA: a functional promoter consists of multiple upstream domains.
    Chang DD; Clayton DA
    Mol Cell Biol; 1986 Sep; 6(9):3253-61. PubMed ID: 3023972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro transcription of human mitochondrial DNA. Identification of specific light strand transcripts from the displacement loop region.
    Walberg MW; Clayton DA
    J Biol Chem; 1983 Jan; 258(2):1268-75. PubMed ID: 6571694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template sequences required for transcription of Xenopus laevis mitochondrial DNA from two bidirectional promoters.
    Bogenhagen DF; Romanelli MF
    Mol Cell Biol; 1988 Jul; 8(7):2917-24. PubMed ID: 3405223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minor transcription initiation events indicate that both human mitochondrial promoters function bidirectionally.
    Chang DD; Hixson JE; Clayton DA
    Mol Cell Biol; 1986 Jan; 6(1):294-301. PubMed ID: 3785149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate in vitro transcription of Xenopus laevis mitochondrial DNA from two bidirectional promoters.
    Bogenhagen DF; Yoza BK
    Mol Cell Biol; 1986 Jul; 6(7):2543-50. PubMed ID: 3023938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional slippage during the transcription initiation process at a mutant lac promoter in vivo.
    Xiong XF; Reznikoff WS
    J Mol Biol; 1993 Jun; 231(3):569-80. PubMed ID: 7685823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional requirements of the distal heavy-strand promoter of mtDNA.
    Zollo O; Tiranti V; Sondheimer N
    Proc Natl Acad Sci U S A; 2012 Apr; 109(17):6508-12. PubMed ID: 22454497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA.
    Montoya J; Christianson T; Levens D; Rabinowitz M; Attardi G
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7195-9. PubMed ID: 6185947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of transcriptional regulatory elements in human mitochondrial DNA by linker substitution analysis.
    Topper JN; Clayton DA
    Mol Cell Biol; 1989 Mar; 9(3):1200-11. PubMed ID: 2725494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nifH and nifDK promoter regions from Rhizobium japonicum share structural homologies with each other and with nitrogen-regulated promoters from other organisms.
    Adams TH; Chelm BK
    J Mol Appl Genet; 1984; 2(4):392-405. PubMed ID: 6588133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected sequences and structures of mtDNA required for efficient transcription from the first heavy-strand promoter.
    Uchida A; Murugesapillai D; Kastner M; Wang Y; Lodeiro MF; Prabhakar S; Oliver GV; Arnold JJ; Maher LJ; Williams MC; Cameron CE
    Elife; 2017 Jul; 6():. PubMed ID: 28745586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro.
    Reiter WD; Hüdepohl U; Zillig W
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9509-13. PubMed ID: 2124695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.