BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38576341)

  • 1. Spatially controlled diffusion range of tumor-associated angiogenic factors to develop a tumor model using a microfluidic resistive circuit.
    Hsu YH; Yang WC; Chen YT; Lin CY; Yang CF; Liu WW; Shivani S; Li PC
    Lab Chip; 2024 May; 24(10):2644-2657. PubMed ID: 38576341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiogenic Sprouting Dynamics Mediated by Endothelial-Fibroblast Interactions in Microfluidic Systems.
    Walji N; Kheiri S; Young EWK
    Adv Biol (Weinh); 2021 Nov; 5(11):e2101080. PubMed ID: 34655165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device.
    Nashimoto Y; Hayashi T; Kunita I; Nakamasu A; Torisawa YS; Nakayama M; Takigawa-Imamura H; Kotera H; Nishiyama K; Miura T; Yokokawa R
    Integr Biol (Camb); 2017 Jun; 9(6):506-518. PubMed ID: 28561127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs.
    Liu Y; Sakolish C; Chen Z; Phan DTT; Bender RHF; Hughes CCW; Rusyn I
    Toxicology; 2020 Dec; 445():152601. PubMed ID: 32980478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients.
    Baker BM; Trappmann B; Stapleton SC; Toro E; Chen CS
    Lab Chip; 2013 Aug; 13(16):3246-52. PubMed ID: 23787488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays.
    Hsu YH; Moya ML; Hughes CC; George SC; Lee AP
    Lab Chip; 2013 Aug; 13(15):2990-8. PubMed ID: 23723013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal glioblastoma-induced mature de-novo vessel formation of vascular endothelial cells in a microfluidic device.
    Amemiya T; Hata N; Mizoguchi M; Yokokawa R; Kawamura Y; Hatae R; Sangatsuda Y; Kuga D; Fujioka Y; Takigawa K; Akagi Y; Yoshimoto K; Iihara K; Miura T
    Mol Biol Rep; 2021 Jan; 48(1):395-403. PubMed ID: 33387197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D Human Renal Cell Carcinoma-on-a-Chip for the Study of Tumor Angiogenesis.
    Miller CP; Tsuchida C; Zheng Y; Himmelfarb J; Akilesh S
    Neoplasia; 2018 Jun; 20(6):610-620. PubMed ID: 29747161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.
    Ryu H; Oh S; Lee HJ; Lee JY; Lee HK; Jeon NL
    J Lab Autom; 2015 Jun; 20(3):296-301. PubMed ID: 25532526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid model of tumor growth and angiogenesis: In silico experiments.
    Phillips CM; Lima EABF; Woodall RT; Brock A; Yankeelov TE
    PLoS One; 2020; 15(4):e0231137. PubMed ID: 32275674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel angiogenic model based on stable, fluorescently labelled endothelial cell lines amenable to scale-up for high content screening.
    Prigozhina NL; Heisel A; Wei K; Noberini R; Hunter EA; Calzolari D; Seldeen JR; Pasquale EB; Ruiz-Lozano P; Mercola M; Price JH
    Biol Cell; 2011 Oct; 103(10):467-81. PubMed ID: 21732911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis.
    Ko J; Ahn J; Kim S; Lee Y; Lee J; Park D; Jeon NL
    Lab Chip; 2019 Sep; 19(17):2822-2833. PubMed ID: 31360969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma.
    Levine HA; Pamuk S; Sleeman BD; Nilsen-Hamilton M
    Bull Math Biol; 2001 Sep; 63(5):801-63. PubMed ID: 11565406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis for the differences in vasculogenic activity and sensitivity to angiogenic stimulants between human glioma cells and normal endothelial cells.
    Kuang XY; Ren Y; Chen C; Su J; Li HM; Liu SJ; Sun TJ; Mu DY; Lu J; Chen L; Qu HD; Cui YH; Yu AY; Yao XH
    Brain Res; 2020 Dec; 1748():147082. PubMed ID: 32866544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anchor-IMPACT: A standardized microfluidic platform for high-throughput antiangiogenic drug screening.
    Kim S; Ko J; Lee SR; Park D; Park S; Jeon NL
    Biotechnol Bioeng; 2021 Jul; 118(7):2524-2535. PubMed ID: 33764506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor angiogenesis of SCLC inhibited by decreased expression of FMOD via downregulating angiogenic factors of endothelial cells.
    Ao Z; Yu S; Qian P; Gao W; Guo R; Dong X; Xu J; Zhang R; Jiang C; Ji F; Qian G
    Biomed Pharmacother; 2017 Mar; 87():539-547. PubMed ID: 28081464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.
    Somaweera H; Haputhanthri SO; Ibraguimov A; Pappas D
    Analyst; 2015 Aug; 140(15):5029-38. PubMed ID: 26050759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.