These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 38576361)

  • 1. Direct laser writing-enabled 3D printing strategies for microfluidic applications.
    Young OM; Xu X; Sarker S; Sochol RD
    Lab Chip; 2024 Apr; 24(9):2371-2396. PubMed ID: 38576361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FABRICATION OF MULTILUMEN MICROFLUIDIC TUBING FOR
    Felix BM; Young OM; Andreou JT; Sarker S; Fuge MD; Krieger A; Weiss CR; Bailey CR; Sochol RD
    Proc IEEE Int Conf Micro Electro Mech Syst; 2024 Jan; 2024():1158-1161. PubMed ID: 38516341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric Determinants of In-Situ Direct Laser Writing.
    Lamont AC; Alsharhan AT; Sochol RD
    Sci Rep; 2019 Jan; 9(1):394. PubMed ID: 30674934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOWARD CONTROLLED-RELEASE DRUG DELIVERY MICROCARRIERS ENABLED BY DIRECT LASER WRITING 3D PRINTING.
    Sarker S; Forghani K; Wen Z; Halli RN; Hoag S; Flank S; Sochol RD
    Proc IEEE Int Conf Micro Electro Mech Syst; 2024 Jan; 2024():433-436. PubMed ID: 38482161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D-MICROPRINTED COAXIAL NOZZLE FOR FABRICATING LONG, FLEXIBLE MICROFLUIDIC TUBING.
    Young OM; Felix BM; Fuge MD; Krieger A; Sochol RD
    Proc IEEE Int Conf Micro Electro Mech Syst; 2024 Jan; 2024():1174-1177. PubMed ID: 38482160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile multi-material direct laser writing strategy.
    Lamont AC; Restaino MA; Kim MJ; Sochol RD
    Lab Chip; 2019 Jul; 19(14):2340-2345. PubMed ID: 31209452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed microfluidic circuitry via multijet-based additive manufacturing.
    Sochol RD; Sweet E; Glick CC; Venkatesh S; Avetisyan A; Ekman KF; Raulinaitis A; Tsai A; Wienkers A; Korner K; Hanson K; Long A; Hightower BJ; Slatton G; Burnett DC; Massey TL; Iwai K; Lee LP; Pister KS; Lin L
    Lab Chip; 2016 Feb; 16(4):668-78. PubMed ID: 26725379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printing on Particles: Combining Two-Photon Nanolithography and Capillary Assembly to Fabricate Multimaterial Microstructures.
    van Kesteren S; Shen X; Aldeghi M; Isa L
    Adv Mater; 2023 Mar; 35(11):e2207101. PubMed ID: 36601964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization.
    Käpylä E; Sedlačík T; Aydogan DB; Viitanen J; Rypáček F; Kellomäki M
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():280-9. PubMed ID: 25175215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submicron Patterns-on-a-Chip: Fabrication of a Microfluidic Device Incorporating 3D Printed Surface Ornaments.
    Nouri-Goushki M; Sharma A; Sasso L; Zhang S; Van der Eerden BCJ; Staufer U; Fratila-Apachitei LE; Zadpoor AA
    ACS Biomater Sci Eng; 2019 Nov; 5(11):6127-6136. PubMed ID: 33405666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D microfluidics via cyclic olefin polymer-based in situ direct laser writing.
    Alsharhan AT; Acevedo R; Warren R; Sochol RD
    Lab Chip; 2019 Sep; 19(17):2799-2810. PubMed ID: 31334525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated on-axis direct laser writing of coupling elements for photonic chips.
    Perez E; Moille G; Lu X; Westly D; Srinivasan K
    Opt Express; 2020 Dec; 28(26):39340-39353. PubMed ID: 33379486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct laser writing of liquid crystal elastomers oriented by a horizontal electric field.
    Carlotti M; Tricinci O; den Hoed F; Palagi S; Mattoli V
    Open Res Eur; 2021; 1():129. PubMed ID: 37645193
    [No Abstract]   [Full Text] [Related]  

  • 15. Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures.
    Kotz F; Quick AS; Risch P; Martin T; Hoose T; Thiel M; Helmer D; Rapp BE
    Adv Mater; 2021 Mar; 33(9):e2006341. PubMed ID: 33448090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid lithography: combining UV-exposure and two photon direct laser writing.
    Eschenbaum C; Großmann D; Dopf K; Kettlitz S; Bocksrocker T; Valouch S; Lemmer U
    Opt Express; 2013 Dec; 21(24):29921-6. PubMed ID: 24514543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing.
    Serex L; Bertsch A; Renaud P
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
    Alapan Y; Hasan MN; Shen R; Gurkan UA
    J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Dots Facilitate 3D Two-Photon Laser Lithography.
    Yu Y; Prudnikau A; Lesnyak V; Kirchner R
    Adv Mater; 2023 Jul; 35(29):e2211702. PubMed ID: 37042293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.