These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38577327)
1. Evaluation of the neoadjuvant chemotherapy response in osteosarcoma using the MRI DWI-based machine learning radiomics nomogram. Zhang L; Gao Q; Dou Y; Cheng T; Xia Y; Li H; Gao S Front Oncol; 2024; 14():1345576. PubMed ID: 38577327 [TBL] [Abstract][Full Text] [Related]
2. Automated prediction of the neoadjuvant chemotherapy response in osteosarcoma with deep learning and an MRI-based radiomics nomogram. Zhong J; Zhang C; Hu Y; Zhang J; Liu Y; Si L; Xing Y; Ding D; Geng J; Jiao Q; Zhang H; Yang G; Yao W Eur Radiol; 2022 Sep; 32(9):6196-6206. PubMed ID: 35364712 [TBL] [Abstract][Full Text] [Related]
3. Development of a MRI-Based Radiomics Nomogram for Prediction of Response of Patients With Muscle-Invasive Bladder Cancer to Neoadjuvant Chemotherapy. Zhang X; Wang Y; Zhang J; Zhang L; Wang S; Chen Y Front Oncol; 2022; 12():878499. PubMed ID: 35646654 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning-Based Radiomics Nomogram With Dynamic Contrast-Enhanced MRI of the Osteosarcoma for Evaluation of Efficacy of Neoadjuvant Chemotherapy. Zhang L; Ge Y; Gao Q; Zhao F; Cheng T; Li H; Xia Y Front Oncol; 2021; 11():758921. PubMed ID: 34868973 [TBL] [Abstract][Full Text] [Related]
5. [Prediction of platinum-based chemotherapy sensitivity for epithelial ovarian cancer by multi-sequence MRI-based radiomic nomogram]. Mao MM; Li HM; Shi J; Qiu QS; Feng F Zhonghua Yi Xue Za Zhi; 2022 Jan; 102(3):201-208. PubMed ID: 35042289 [No Abstract] [Full Text] [Related]
6. A Delta-radiomics model for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma. Lin P; Yang PF; Chen S; Shao YY; Xu L; Wu Y; Teng W; Zhou XZ; Li BH; Luo C; Xu LM; Huang M; Niu TY; Ye ZM Cancer Imaging; 2020 Jan; 20(1):7. PubMed ID: 31937372 [TBL] [Abstract][Full Text] [Related]
7. Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features. Tan X; Yang X; Hu S; Ge Y; Wu Q; Wang J; Sun Z J Xray Sci Technol; 2023; 31(1):49-61. PubMed ID: 36314190 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients. Chen S; Shu Z; Li Y; Chen B; Tang L; Mo W; Shao G; Shao F Front Oncol; 2020; 10():1410. PubMed ID: 32923392 [No Abstract] [Full Text] [Related]
9. MRI-based radiomics signature for pretreatment prediction of pathological response to neoadjuvant chemotherapy in osteosarcoma: a multicenter study. Chen H; Zhang X; Wang X; Quan X; Deng Y; Lu M; Wei Q; Ye Q; Zhou Q; Xiang Z; Liang C; Yang W; Zhao Y Eur Radiol; 2021 Oct; 31(10):7913-7924. PubMed ID: 33825032 [TBL] [Abstract][Full Text] [Related]
10. Delta Radiomics Based on MRI for Predicting Axillary Lymph Node Pathologic Complete Response After Neoadjuvant Chemotherapy in Breast Cancer Patients. Mao N; Bao Y; Dong C; Zhou H; Zhang H; Ma H; Wang Q; Xie H; Qu N; Wang P; Lin F; Lu J Acad Radiol; 2024 Sep; ():. PubMed ID: 39271381 [TBL] [Abstract][Full Text] [Related]
11. Radiomics of contrast-enhanced spectral mammography for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer. Zhang K; Lin J; Lin F; Wang Z; Zhang H; Zhang S; Mao N; Qiao G J Xray Sci Technol; 2023; 31(4):669-683. PubMed ID: 37066960 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study. Wang X; Hua H; Han J; Zhong X; Liu J; Chen J Clin Breast Cancer; 2023 Aug; 23(6):e331-e344. PubMed ID: 37321954 [TBL] [Abstract][Full Text] [Related]
13. MR imaging of thymomas: a combined radiomics nomogram to predict histologic subtypes. Xiao G; Hu YC; Ren JL; Qin P; Han JC; Qu XY; Rong WC; Yan WQ; Tian Q; Han Y; Wang WP; Wang SM; Ma J; Wang W; Cui GB Eur Radiol; 2021 Jan; 31(1):447-457. PubMed ID: 32700020 [TBL] [Abstract][Full Text] [Related]
14. Radiomics Based on T2-Weighted Imaging and Apparent Diffusion Coefficient Images for Preoperative Evaluation of Lymph Node Metastasis in Rectal Cancer Patients. Li C; Yin J Front Oncol; 2021; 11():671354. PubMed ID: 34041033 [TBL] [Abstract][Full Text] [Related]
15. Different multiparametric MRI-based radiomics models for differentiating stage IA endometrial cancer from benign endometrial lesions: A multicenter study. Bi Q; Wang Y; Deng Y; Liu Y; Pan Y; Song Y; Wu Y; Wu K Front Oncol; 2022; 12():939930. PubMed ID: 35992858 [TBL] [Abstract][Full Text] [Related]
16. [Value of radiomics models based on MRI diffusion weighted imaging and apparent diffusion coefficient in differentiating benign and malignant thyroid nodules]. Xu HJ; Yang Q; He P; Luo HH; Deng WM; Liu Z; Luo DH Zhonghua Yi Xue Za Zhi; 2023 Nov; 103(41):3279-3286. PubMed ID: 37926572 [No Abstract] [Full Text] [Related]
17. Preoperative prediction of sonic hedgehog and group 4 molecular subtypes of pediatric medulloblastoma based on radiomics of multiparametric MRI combined with clinical parameters. Wang Y; Wang L; Qin B; Hu X; Xiao W; Tong Z; Li S; Jing Y; Li L; Zhang Y Front Neurosci; 2023; 17():1157858. PubMed ID: 37113160 [TBL] [Abstract][Full Text] [Related]
18. [Application of MRI-based Radiomics Models in the Assessment of Hepatic Metastasis of Rectal Cancer]. Hu SX; Yang K; Wang XR; Wen DG; Xia CC; Li X; Li ZL Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):311-318. PubMed ID: 33829708 [TBL] [Abstract][Full Text] [Related]
19. Prediction of response to preoperative neoadjuvant chemotherapy in extremity high-grade osteosarcoma using X-ray and multiparametric MRI radiomics. Luo Z; Li J; Liao Y; Huang W; Li Y; Shen X J Xray Sci Technol; 2023; 31(3):611-626. PubMed ID: 37005907 [TBL] [Abstract][Full Text] [Related]
20. Radiomics and nomogram of magnetic resonance imaging for preoperative prediction of microvascular invasion in small hepatocellular carcinoma. Chen YD; Zhang L; Zhou ZP; Lin B; Jiang ZJ; Tang C; Dang YW; Xia YW; Song B; Long LL World J Gastroenterol; 2022 Aug; 28(31):4399-4416. PubMed ID: 36159011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]